Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.04584
Cited By
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
9 June 2019
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers"
50 / 119 papers shown
Title
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
24
12
0
13 Jun 2022
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
45
15
0
07 Jun 2022
Certified Robustness in Federated Learning
Motasem Alfarra
Juan C. Pérez
Egor Shulgin
Peter Richtárik
Bernard Ghanem
AAML
FedML
18
7
0
06 Jun 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
32
3
0
03 Jun 2022
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Z. Horváth
Mark Niklas Muller
Marc Fischer
Martin Vechev
30
3
0
27 May 2022
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
Sizhe Chen
Zhehao Huang
Qinghua Tao
Yingwen Wu
Cihang Xie
X. Huang
AAML
110
28
0
24 May 2022
Smooth-Reduce: Leveraging Patches for Improved Certified Robustness
Ameya Joshi
Minh Pham
Minsu Cho
Leonid Boytsov
Filipe Condessa
J. Zico Kolter
C. Hegde
UQCV
AAML
23
2
0
12 May 2022
3DeformRS: Certifying Spatial Deformations on Point Clouds
S. GabrielPérez
Juan C. Pérez
Motasem Alfarra
Silvio Giancola
Bernard Ghanem
3DPC
32
12
0
12 Apr 2022
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang
Yuguang Yao
Jinghan Jia
Jinfeng Yi
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
15
33
0
27 Mar 2022
COPA: Certifying Robust Policies for Offline Reinforcement Learning against Poisoning Attacks
Fan Wu
Linyi Li
Chejian Xu
Huan Zhang
B. Kailkhura
K. Kenthapadi
Ding Zhao
Bo-wen Li
AAML
OffRL
24
34
0
16 Mar 2022
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
48
10
0
09 Mar 2022
Adversarially Robust Learning with Tolerance
H. Ashtiani
Vinayak Pathak
Ruth Urner
AAML
18
9
0
02 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Robust Probabilistic Time Series Forecasting
Taeho Yoon
Youngsuk Park
Ernest K. Ryu
Yuyang Wang
AAML
AI4TS
20
18
0
24 Feb 2022
Smoothed Embeddings for Certified Few-Shot Learning
Mikhail Aleksandrovich Pautov
Olesya Kuznetsova
Nurislam Tursynbek
Aleksandr Petiushko
Ivan V. Oseledets
34
5
0
02 Feb 2022
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
19
6
0
31 Jan 2022
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
15
13
0
14 Dec 2021
FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimization
Xingchao Liu
Chengyue Gong
Lemeng Wu
Shujian Zhang
Haoran Su
Qiang Liu
CLIP
35
89
0
02 Dec 2021
Certified Adversarial Defenses Meet Out-of-Distribution Corruptions: Benchmarking Robustness and Simple Baselines
Jiachen Sun
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Dan Hendrycks
Jihun Hamm
Z. Morley Mao
AAML
28
21
0
01 Dec 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
27
76
0
02 Nov 2021
Towards Robust Waveform-Based Acoustic Models
Dino Oglic
Zoran Cvetkovic
Peter Sollich
Steve Renals
Bin Yu
OOD
AAML
18
1
0
16 Oct 2021
Adversarial Token Attacks on Vision Transformers
Ameya Joshi
Gauri Jagatap
C. Hegde
ViT
30
19
0
08 Oct 2021
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan V. Oseledets
AAML
44
15
0
22 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
35
16
0
20 Sep 2021
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
26
689
0
04 Sep 2021
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
Chong Xiang
Saeed Mahloujifar
Prateek Mittal
VLM
AAML
24
73
0
20 Aug 2021
Adversarial Reinforced Instruction Attacker for Robust Vision-Language Navigation
Bingqian Lin
Yi Zhu
Yanxin Long
Xiaodan Liang
QiXiang Ye
Liang Lin
AAML
39
16
0
23 Jul 2021
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
23
48
0
22 Jul 2021
Policy Smoothing for Provably Robust Reinforcement Learning
Aounon Kumar
Alexander Levine
S. Feizi
AAML
15
54
0
21 Jun 2021
Adversarial purification with Score-based generative models
Jongmin Yoon
S. Hwang
Juho Lee
DiffM
14
151
0
11 Jun 2021
Random Noise Defense Against Query-Based Black-Box Attacks
Zeyu Qin
Yanbo Fan
H. Zha
Baoyuan Wu
AAML
19
59
0
23 Apr 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
38
34
0
15 Mar 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
38
90
0
05 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
25
41
0
05 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
24
6
0
01 Mar 2021
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
28
13
0
12 Feb 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
8
9
0
05 Feb 2021
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip H. S. Torr
Bernard Ghanem
UQCV
23
34
0
08 Dec 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Higher-Order Certification for Randomized Smoothing
Jeet Mohapatra
Ching-Yun Ko
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
15
44
0
13 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Adversarial Boot Camp: label free certified robustness in one epoch
Ryan Campbell
Chris Finlay
Adam M. Oberman
AAML
20
0
0
05 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
11
107
0
05 Oct 2020
Certifying Confidence via Randomized Smoothing
Aounon Kumar
Alexander Levine
S. Feizi
Tom Goldstein
UQCV
28
38
0
17 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
416
0
16 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
531
0
01 Jul 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Guy Van den Broeck
24
50
0
16 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
19
81
0
15 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
20
246
0
13 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
21
45
0
28 May 2020
Previous
1
2
3
Next