Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.04724
Cited By
Large Scale Structure of Neural Network Loss Landscapes
11 June 2019
Stanislav Fort
Stanislaw Jastrzebski
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Large Scale Structure of Neural Network Loss Landscapes"
24 / 24 papers shown
Title
Analyzing the Role of Permutation Invariance in Linear Mode Connectivity
Keyao Zhan
Puheng Li
Lei Wu
MoMe
79
0
0
13 Mar 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun-Jie Luo
76
1
0
28 Jan 2025
Input Space Mode Connectivity in Deep Neural Networks
Jakub Vrabel
Ori Shem-Ur
Yaron Oz
David Krueger
48
1
0
09 Sep 2024
A survey of deep learning optimizers -- first and second order methods
Rohan Kashyap
ODL
29
6
0
28 Nov 2022
Multiple Modes for Continual Learning
Siddhartha Datta
N. Shadbolt
CLL
MoMe
41
2
0
29 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
44
22
0
22 Sep 2022
Linear Connectivity Reveals Generalization Strategies
Jeevesh Juneja
Rachit Bansal
Kyunghyun Cho
João Sedoc
Naomi Saphra
232
45
0
24 May 2022
Interpolating Compressed Parameter Subspaces
Siddhartha Datta
N. Shadbolt
32
5
0
19 May 2022
Low-Loss Subspace Compression for Clean Gains against Multi-Agent Backdoor Attacks
Siddhartha Datta
N. Shadbolt
AAML
21
6
0
07 Mar 2022
When Do Flat Minima Optimizers Work?
Jean Kaddour
Linqing Liu
Ricardo M. A. Silva
Matt J. Kusner
ODL
11
58
0
01 Feb 2022
Towards Better Plasticity-Stability Trade-off in Incremental Learning: A Simple Linear Connector
Guoliang Lin
Hanlu Chu
Hanjiang Lai
MoMe
CLL
29
43
0
15 Oct 2021
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
35
215
0
12 Oct 2021
Connecting Low-Loss Subspace for Personalized Federated Learning
S. Hahn
Minwoo Jeong
Junghye Lee
FedML
14
18
0
16 Sep 2021
What can linear interpolation of neural network loss landscapes tell us?
Tiffany J. Vlaar
Jonathan Frankle
MoMe
22
27
0
30 Jun 2021
Extracting Global Dynamics of Loss Landscape in Deep Learning Models
Mohammed Eslami
Hamed Eramian
Marcio Gameiro
W. Kalies
Konstantin Mischaikow
16
1
0
14 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
16
85
0
20 Feb 2021
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
19
81
0
15 Jun 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
17
639
0
20 Feb 2020
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OOD
UQCV
13
617
0
05 Dec 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
19
94
0
28 Jan 2019
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
278
2,888
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1