ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.05467
  4. Cited By
Imitation Learning of Neural Spatio-Temporal Point Processes

Imitation Learning of Neural Spatio-Temporal Point Processes

13 June 2019
Shixiang Zhu
Shuang Li
Zhigang Peng
Yao Xie
    3DPC
    AI4TS
ArXivPDFHTML

Papers citing "Imitation Learning of Neural Spatio-Temporal Point Processes"

10 / 10 papers shown
Title
Learning Temporal Point Processes via Reinforcement Learning
Learning Temporal Point Processes via Reinforcement Learning
Shuang Li
Shuai Xiao
Shixiang Zhu
Nan Du
Yao Xie
Le Song
AI4TS
26
105
0
12 Nov 2018
Crime Event Embedding with Unsupervised Feature Selection
Crime Event Embedding with Unsupervised Feature Selection
Shixiang Zhu
Yao Xie
49
19
0
15 Jun 2018
Deep Reinforcement Learning of Marked Temporal Point Processes
Deep Reinforcement Learning of Marked Temporal Point Processes
U. Upadhyay
A. De
Manuel Gomez Rodriguez
BDL
OffRL
38
112
0
23 May 2018
Crime incidents embedding using restricted Boltzmann machines
Crime incidents embedding using restricted Boltzmann machines
Shixiang Zhu
Yao Xie
24
12
0
28 Oct 2017
Wasserstein Learning of Deep Generative Point Process Models
Wasserstein Learning of Deep Generative Point Process Models
Shuai Xiao
Mehrdad Farajtabar
X. Ye
Junchi Yan
Le Song
H. Zha
DiffM
24
169
0
23 May 2017
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
90
3,084
0
10 Jun 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
51
1,689
0
22 Apr 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
134
8,805
0
04 Feb 2016
Training generative neural networks via Maximum Mean Discrepancy
  optimization
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
44
528
0
14 May 2015
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
74
2,348
0
15 May 2008
1