ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09218
  4. Cited By
FlipTest: Fairness Testing via Optimal Transport

FlipTest: Fairness Testing via Optimal Transport

21 June 2019
Emily Black
Samuel Yeom
Matt Fredrikson
ArXivPDFHTML

Papers citing "FlipTest: Fairness Testing via Optimal Transport"

50 / 55 papers shown
Title
Privilege Scores
Privilege Scores
Ludwig Bothmann
Philip A. Boustani
Jose M. Alvarez
Giuseppe Casalicchio
Bernd Bischl
Susanne Dandl
57
0
0
03 Feb 2025
Auditing and Enforcing Conditional Fairness via Optimal Transport
Auditing and Enforcing Conditional Fairness via Optimal Transport
Mohsen Ghassemi
Alan Mishler
Niccolò Dalmasso
Luhao Zhang
Vamsi K. Potluru
T. Balch
Manuela Veloso
33
0
0
17 Oct 2024
Optimal Transport for Probabilistic Circuits
Optimal Transport for Probabilistic Circuits
Adrian Ciotinga
YooJung Choi
TPM
OT
47
0
0
16 Oct 2024
From Transparency to Accountability and Back: A Discussion of Access and
  Evidence in AI Auditing
From Transparency to Accountability and Back: A Discussion of Access and Evidence in AI Auditing
Sarah H. Cen
Rohan Alur
33
2
0
07 Oct 2024
Unbiasing on the Fly: Explanation-Guided Human Oversight of Machine
  Learning System Decisions
Unbiasing on the Fly: Explanation-Guided Human Oversight of Machine Learning System Decisions
Hussaini Mamman
S. Basri
A. Balogun
Abubakar Abdullahi Imam
Ganesh M. Kumar
L. F. Capretz
FaML
43
0
0
25 Jun 2024
Fairness in Social Influence Maximization via Optimal Transport
Fairness in Social Influence Maximization via Optimal Transport
Shubham Chowdhary
Giulia De Pasquale
Nicolas Lanzetti
Ana-Andreea Stoica
Florian Dorfler
20
0
0
25 Jun 2024
Mapping the Potential of Explainable AI for Fairness Along the AI
  Lifecycle
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
43
4
0
29 Apr 2024
FALE: Fairness-Aware ALE Plots for Auditing Bias in Subgroups
FALE: Fairness-Aware ALE Plots for Auditing Bias in Subgroups
G. Giannopoulos
Dimitris Sacharidis
Nikolas Theologitis
Loukas Kavouras
Ioannis Emiris
16
0
0
29 Apr 2024
Specification Overfitting in Artificial Intelligence
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
58
0
0
13 Mar 2024
OTClean: Data Cleaning for Conditional Independence Violations using
  Optimal Transport
OTClean: Data Cleaning for Conditional Independence Violations using Optimal Transport
Alireza Pirhadi
Mohammad Hossein Moslemi
Alexander Cloninger
Mostafa Milani
Babak Salimi
22
4
0
04 Mar 2024
Explaining Probabilistic Models with Distributional Values
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
FAtt
37
2
0
15 Feb 2024
PROSAC: Provably Safe Certification for Machine Learning Models under
  Adversarial Attacks
PROSAC: Provably Safe Certification for Machine Learning Models under Adversarial Attacks
Ziquan Liu
Zhuo Zhi
Ilija Bogunovic
Carsten Gerner-Beuerle
Miguel R. D. Rodrigues
AAML
16
0
0
04 Feb 2024
Measuring and Mitigating Biases in Motor Insurance Pricing
Measuring and Mitigating Biases in Motor Insurance Pricing
Mulah Moriah
Franck Vermet
Arthur Charpentier
11
1
0
20 Nov 2023
Group-blind optimal transport to group parity and its constrained
  variants
Group-blind optimal transport to group parity and its constrained variants
Quan-Gen Zhou
Jakub Marecek
40
3
0
17 Oct 2023
A Critical Survey on Fairness Benefits of Explainable AI
A Critical Survey on Fairness Benefits of Explainable AI
Luca Deck
Jakob Schoeffer
Maria De-Arteaga
Niklas Kühl
36
11
0
15 Oct 2023
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
  for Developing Practical Guidelines and Tools
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools
Maximilian Schambach
Rakshit Naidu
Rayid Ghani
Kit T. Rodolfa
Daniel E. Ho
Hoda Heidari
FaML
35
14
0
29 Sep 2023
Nearly Minimax Optimal Wasserstein Conditional Independence Testing
Nearly Minimax Optimal Wasserstein Conditional Independence Testing
Matey Neykov
Larry A. Wasserman
Ilmun Kim
Sivaraman Balakrishnan
35
2
0
16 Aug 2023
On the Cause of Unfairness: A Training Sample Perspective
On the Cause of Unfairness: A Training Sample Perspective
Yuanshun Yao
Yang Liu
TDI
44
0
0
30 Jun 2023
Fairness Aware Counterfactuals for Subgroups
Fairness Aware Counterfactuals for Subgroups
Loukas Kavouras
Konstantinos Tsopelas
G. Giannopoulos
Dimitris Sacharidis
Eleni Psaroudaki
Nikolaos Theologitis
D. Rontogiannis
Dimitris Fotakis
Ioannis Emiris
42
8
0
26 Jun 2023
Latent Imitator: Generating Natural Individual Discriminatory Instances
  for Black-Box Fairness Testing
Latent Imitator: Generating Natural Individual Discriminatory Instances for Black-Box Fairness Testing
Yisong Xiao
Aishan Liu
Tianlin Li
Xianglong Liu
22
26
0
19 May 2023
Fair-CDA: Continuous and Directional Augmentation for Group Fairness
Fair-CDA: Continuous and Directional Augmentation for Group Fairness
Ruijin Sun
Fengwei Zhou
Zhenhua Dong
Chuanlong Xie
Lanqing Hong
Jiawei Li
Rui-Xun Zhang
Zerui Li
Zhenguo Li
35
2
0
01 Apr 2023
Mitigating Source Bias for Fairer Weak Supervision
Mitigating Source Bias for Fairer Weak Supervision
Changho Shin
Sonia Cromp
Dyah Adila
Frederic Sala
29
2
0
30 Mar 2023
Counterfactual Situation Testing: Uncovering Discrimination under
  Fairness given the Difference
Counterfactual Situation Testing: Uncovering Discrimination under Fairness given the Difference
Jose M. Alvarez
Salvatore Ruggieri
30
13
0
23 Feb 2023
Fairness and Sequential Decision Making: Limits, Lessons, and
  Opportunities
Fairness and Sequential Decision Making: Limits, Lessons, and Opportunities
Samer B. Nashed
Justin Svegliato
Su Lin Blodgett
FaML
40
6
0
13 Jan 2023
ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
  Black-Box Supervised Machine Learning Models
ComplAI: Theory of A Unified Framework for Multi-factor Assessment of Black-Box Supervised Machine Learning Models
Arkadipta De
Satya Swaroop Gudipudi
Sourab Panchanan
M. Desarkar
FaML
18
0
0
30 Dec 2022
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
26
0
0
29 Sep 2022
Explainable Global Fairness Verification of Tree-Based Classifiers
Explainable Global Fairness Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
38
2
0
27 Sep 2022
Fair mapping
Fair mapping
Sébastien Gambs
Rosin Claude Ngueveu
42
0
0
01 Sep 2022
Locating disparities in machine learning
Locating disparities in machine learning
Moritz von Zahn
O. Hinz
Stefan Feuerriegel
19
4
0
13 Aug 2022
Counterfactual Fairness Is Basically Demographic Parity
Counterfactual Fairness Is Basically Demographic Parity
Lucas Rosenblatt
R. T. Witter
21
15
0
07 Aug 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
34
32
0
19 Apr 2022
GAN Estimation of Lipschitz Optimal Transport Maps
GAN Estimation of Lipschitz Optimal Transport Maps
Alberto González Sanz
Lucas de Lara
Louis Bethune
Jean-Michel Loubes
OT
11
2
0
16 Feb 2022
Prediction Sensitivity: Continual Audit of Counterfactual Fairness in
  Deployed Classifiers
Prediction Sensitivity: Continual Audit of Counterfactual Fairness in Deployed Classifiers
Krystal Maughan
Ivoline C. Ngong
Joseph P. Near
19
2
0
09 Feb 2022
Counterfactual Multi-Token Fairness in Text Classification
Counterfactual Multi-Token Fairness in Text Classification
P. Lohia
21
3
0
08 Feb 2022
NeuronFair: Interpretable White-Box Fairness Testing through Biased
  Neuron Identification
NeuronFair: Interpretable White-Box Fairness Testing through Biased Neuron Identification
Haibin Zheng
Zhiqing Chen
Tianyu Du
Xuhong Zhang
Yao Cheng
S. Ji
Jingyi Wang
Yue Yu
Jinyin Chen
16
51
0
25 Dec 2021
Amazon SageMaker Clarify: Machine Learning Bias Detection and
  Explainability in the Cloud
Amazon SageMaker Clarify: Machine Learning Bias Detection and Explainability in the Cloud
Michaela Hardt
Xiaoguang Chen
Xiaoyi Cheng
Michele Donini
J. Gelman
...
Muhammad Bilal Zafar
Sanjiv Ranjan Das
Kevin Haas
Tyler Hill
K. Kenthapadi
ELM
FaML
36
42
0
07 Sep 2021
Transport-based Counterfactual Models
Transport-based Counterfactual Models
Lucas de Lara
Alberto González Sanz
Nicholas M. Asher
Laurent Risser
Jean-Michel Loubes
25
27
0
30 Aug 2021
Plugin Estimation of Smooth Optimal Transport Maps
Plugin Estimation of Smooth Optimal Transport Maps
Tudor Manole
Sivaraman Balakrishnan
Jonathan Niles-Weed
Larry A. Wasserman
OT
28
92
0
26 Jul 2021
Generative Models for Security: Attacks, Defenses, and Opportunities
Generative Models for Security: Attacks, Defenses, and Opportunities
L. A. Bauer
Vincent Bindschaedler
25
4
0
21 Jul 2021
FairBalance: How to Achieve Equalized Odds With Data Pre-processing
FairBalance: How to Achieve Equalized Odds With Data Pre-processing
Zhe Yu
Joymallya Chakraborty
Tim Menzies
FaML
49
3
0
17 Jul 2021
FairCanary: Rapid Continuous Explainable Fairness
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
11
20
0
13 Jun 2021
Testing Group Fairness via Optimal Transport Projections
Testing Group Fairness via Optimal Transport Projections
Nian Si
Karthyek Murthy
Jose H. Blanchet
Viet Anh Nguyen
20
29
0
02 Jun 2021
A Clarification of the Nuances in the Fairness Metrics Landscape
A Clarification of the Nuances in the Fairness Metrics Landscape
Alessandro Castelnovo
Riccardo Crupi
Greta Greco
D. Regoli
Ilaria Giuseppina Penco
A. Cosentini
FaML
13
182
0
01 Jun 2021
Everything is Relative: Understanding Fairness with Optimal Transport
Everything is Relative: Understanding Fairness with Optimal Transport
Kweku Kwegyir-Aggrey
Rebecca Santorella
Sarah M. Brown
OT
8
3
0
20 Feb 2021
A Consistent Extension of Discrete Optimal Transport Maps for Machine
  Learning Applications
A Consistent Extension of Discrete Optimal Transport Maps for Machine Learning Applications
Lucas de Lara
Alberto González Sanz
Jean-Michel Loubes
OT
38
9
0
17 Feb 2021
Unified Shapley Framework to Explain Prediction Drift
Unified Shapley Framework to Explain Prediction Drift
Aalok Shanbhag
A. Ghosh
Josh Rubin
FAtt
FedML
AI4TS
11
3
0
15 Feb 2021
Central Limit Theorems for General Transportation Costs
Central Limit Theorems for General Transportation Costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
OT
13
27
0
12 Feb 2021
Removing biased data to improve fairness and accuracy
Removing biased data to improve fairness and accuracy
Sahil Verma
Michael Ernst
René Just
FaML
16
24
0
05 Feb 2021
A Statistical Test for Probabilistic Fairness
A Statistical Test for Probabilistic Fairness
Bahar Taşkesen
Jose H. Blanchet
Daniel Kuhn
Viet Anh Nguyen
FaML
16
38
0
09 Dec 2020
A Distributionally Robust Approach to Fair Classification
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
28
61
0
18 Jul 2020
12
Next