Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.03338
Cited By
Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation
7 July 2019
Alain Jungo
M. Reyes
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation"
21 / 21 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
86
1
0
25 Nov 2024
Assessing Uncertainty Estimation Methods for 3D Image Segmentation under Distribution Shifts
Masoumeh Javanbakhat
Md Tasnimul Hasan
Cristoph Lippert
UQCV
OOD
21
1
0
10 Feb 2024
Evaluating the Fairness of Deep Learning Uncertainty Estimates in Medical Image Analysis
Raghav Mehta
Changjian Shui
Tal Arbel
16
12
0
06 Mar 2023
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control Method For Robust Cardiac Image Segmentation
F. Uslu
Anil A. Bharath
24
14
0
21 Dec 2022
Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
22
19
0
08 Nov 2022
Exploring Structure-Wise Uncertainty for 3D Medical Image Segmentation
A. Vasiliuk
Daria Frolova
Mikhail Belyaev
B. Shirokikh
26
2
0
01 Nov 2022
Uncertainty Estimation for 3D Dense Prediction via Cross-Point Embeddings
Kaiwen Cai
Chris Xiaoxuan Lu
Xiaowei Huang
3DPC
29
2
0
29 Sep 2022
Uncertainty-aware Multi-modal Learning via Cross-modal Random Network Prediction
Hu Wang
Jianpeng Zhang
Yuanhong Chen
Congbo Ma
Jodie Avery
Louise Hull
G. Carneiro
UQCV
14
18
0
22 Jul 2022
Contrastive and Selective Hidden Embeddings for Medical Image Segmentation
Zhuowei Li
Zihao Liu
Zhiqiang Hu
Qing Xia
Ruiqin Xiong
Shaoting Zhang
Dimitris N. Metaxas
Tingting Jiang
SSL
21
8
0
21 Jan 2022
Diffusion Models for Implicit Image Segmentation Ensembles
J. Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
DiffM
MedIm
VLM
10
265
0
06 Dec 2021
Interactive Medical Image Segmentation with Self-Adaptive Confidence Calibration
Wenhao Li
Qisen Xu
Chuyun Shen
Bin Hu
Fengping Zhu
Yuxin Li
Bo Jin
Xiangfeng Wang
14
5
0
15 Nov 2021
Robustness via Uncertainty-aware Cycle Consistency
Uddeshya Upadhyay
Yanbei Chen
Zeynep Akata
20
21
0
24 Oct 2021
Uncertainty Quantification in Medical Image Segmentation with Multi-decoder U-Net
Yanwu Yang
Xutao Guo
Yiwei Pan
P. Shi
Haiyan Lv
Tingxia Ma
UQCV
27
8
0
15 Sep 2021
Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation
Camila González
Karol Gotkowski
A. Bucher
Ricarda Fischbach
Isabel Kaltenborn
Anirban Mukhopadhyay
8
31
0
13 Jul 2021
Diminishing Uncertainty within the Training Pool: Active Learning for Medical Image Segmentation
V. Nath
Dong Yang
Bennett A. Landman
Daguang Xu
H. Roth
27
68
0
07 Jan 2021
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
S. Kevin Zhou
H. Greenspan
Christos Davatzikos
James S. Duncan
Bram van Ginneken
A. Madabhushi
Jerry L. Prince
Daniel Rueckert
Ronald M. Summers
38
623
0
02 Aug 2020
Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices
Guotai Wang
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
Shaoting Zhang
23
34
0
02 Jul 2020
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
11
262
0
29 Nov 2019
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,608
0
19 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,134
0
06 Jun 2015
1