Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.04490
Cited By
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
10 July 2019
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning"
50 / 211 papers shown
Title
Bridging Active Exploration and Uncertainty-Aware Deployment Using Probabilistic Ensemble Neural Network Dynamics
Taekyung Kim
Jungwi Mun
Junwon Seo
Beomsu Kim
S. Hong
34
11
0
20 May 2023
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
35
5
0
26 Apr 2023
Contingency Analyses with Warm Starter using Probabilistic Graphical Model
Shimiao Li
Amritanshu Pandey
L. Pileggi
AI4CE
23
2
0
10 Apr 2023
Diminishing Return of Value Expansion Methods in Model-Based Reinforcement Learning
Daniel Palenicek
M. Lutter
João Carvalho
Jan Peters
18
4
0
07 Mar 2023
Nature's Cost Function: Simulating Physics by Minimizing the Action
Tim Strang
Isabella Caruso
S. Greydanus
16
3
0
03 Mar 2023
Modulated Neural ODEs
I. Auzina
Çağatay Yıldız
Sara Magliacane
Matthias Bethge
E. Gavves
30
5
0
26 Feb 2023
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge with Data-Driven Control
Adam J. Thorpe
Cyrus Neary
Franck Djeumou
Meeko Oishi
Ufuk Topcu
30
7
0
09 Jan 2023
Towards Scalable Physically Consistent Neural Networks: an Application to Data-driven Multi-zone Thermal Building Models
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
AI4CE
23
28
0
23 Dec 2022
Physics-Informed Model-Based Reinforcement Learning
Adithya Ramesh
Balaraman Ravindran
19
10
0
05 Dec 2022
Guaranteed Conformance of Neurosymbolic Models to Natural Constraints
Kaustubh Sridhar
Souradeep Dutta
James Weimer
Insup Lee
19
7
0
02 Dec 2022
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
11
12
0
01 Dec 2022
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
25
18
0
30 Nov 2022
Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
Valentin Duruisseaux
T. Duong
Melvin Leok
Nikolay A. Atanasov
DRL
AI4CE
18
12
0
29 Nov 2022
Hybrid Learning of Time-Series Inverse Dynamics Models for Locally Isotropic Robot Motion
Tolga-Can Callar
Sven Böttger
17
7
0
23 Nov 2022
Optimization-Based Control for Dynamic Legged Robots
Patrick M. Wensing
Michael Posa
Yue Hu
Adrien Escande
Nicolas Mansard
Andrea Del Prete
17
139
0
21 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
25
89
0
15 Nov 2022
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
32
22
0
10 Nov 2022
Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
27
13
0
03 Nov 2022
Model-based Reinforcement Learning with a Hamiltonian Canonical ODE Network
Yao Feng
Yuhong Jiang
Hang Su
Dong Yan
Jun Zhu
15
1
0
02 Nov 2022
Learning Modular Simulations for Homogeneous Systems
Jayesh K. Gupta
Sai H. Vemprala
Ashish Kapoor
19
6
0
28 Oct 2022
Sample Efficient Dynamics Learning for Symmetrical Legged Robots:Leveraging Physics Invariance and Geometric Symmetries
Jee-eun Lee
Jaemin Lee
T. Bandyopadhyay
Luis Sentis
DRL
27
2
0
13 Oct 2022
Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
L. Prantl
Benjamin Ummenhofer
V. Koltun
Nils Thuerey
AI4CE
PINN
26
29
0
12 Oct 2022
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
Valentin Duruisseaux
J. Burby
Q. Tang
30
11
0
11 Oct 2022
Learning Deep Nets for Gravitational Dynamics with Unknown Disturbance through Physical Knowledge Distillation: Initial Feasibility Study
Hongbin Lin
Qian Gao
X. Chu
Qi Dou
Anton Deguet
Peter Kazanzides
K. W. S. Au
AI4CE
28
7
0
04 Oct 2022
Learning Articulated Rigid Body Dynamics with Lagrangian Graph Neural Network
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
28
17
0
23 Sep 2022
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
38
8
0
23 Sep 2022
Enhancing the Inductive Biases of Graph Neural ODE for Modeling Dynamical Systems
S. Bishnoi
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
27
19
0
22 Sep 2022
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
80
0
08 Sep 2022
Learning the Dynamics of Particle-based Systems with Lagrangian Graph Neural Networks
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
31
20
0
03 Sep 2022
From latent dynamics to meaningful representations
Dedi Wang
Yihang Wang
Luke J. Evans
P. Tiwary
AI4CE
27
7
0
02 Sep 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
19
11
0
25 Aug 2022
Constants of motion network
M. F. Kasim
Yi Heng Lim
23
4
0
22 Aug 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Björn Lütjens
Catherine H. Crawford
C. Watson
C. Hill
Dava Newman
AI4CE
11
9
0
23 Jul 2022
Physics Embedded Neural Network Vehicle Model and Applications in Risk-Aware Autonomous Driving Using Latent Features
Taekyung Kim
Ho-Woon Lee
Wonsuk Lee
6
17
0
16 Jul 2022
Complementing Brightness Constancy with Deep Networks for Optical Flow Prediction
Vincent Le Guen
Clément Rambour
Nicolas Thome
16
1
0
08 Jul 2022
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
22
1
0
30 Jun 2022
ModLaNets: Learning Generalisable Dynamics via Modularity and Physical Inductive Bias
Yupu Lu
Shi-Min Lin
Guanqi Chen
Jia-Yu Pan
32
7
0
24 Jun 2022
KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images
Rembert Daems
Jeroen Taets
Francis Wyffels
Guillaume Crevecoeur
11
1
0
22 Jun 2022
Recognition Models to Learn Dynamics from Partial Observations with Neural ODEs
Mona Buisson-Fenet
V. Morgenthaler
Sebastian Trimpe
F. D. Meglio
46
6
0
25 May 2022
Learning a Better Control Barrier Function
Bolun Dai
P. Krishnamurthy
Farshad Khorrami
13
31
0
11 May 2022
AutoKE: An automatic knowledge embedding framework for scientific machine learning
Mengge Du
Yuntian Chen
Dongxiao Zhang
AI4CE
33
11
0
11 May 2022
Towards Practical Physics-Informed ML Design and Evaluation for Power Grid
Shimiao Li
Amritanshu Pandey
L. Pileggi
AI4CE
4
4
0
07 May 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
37
9
0
29 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
39
55
0
31 Mar 2022
Inferring Articulated Rigid Body Dynamics from RGBD Video
Eric Heiden
Ziang Liu
Vibhav Vineet
Erwin Coumans
Gaurav Sukhatme
PINN
AI4CE
25
11
0
20 Mar 2022
Equivariant Graph Mechanics Networks with Constraints
Wen-bing Huang
J. Han
Yu Rong
Tingyang Xu
Fuchun Sun
Junzhou Huang
AI4CE
33
79
0
12 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Real-time Model Predictive Control and System Identification Using Differentiable Physics Simulation
Sirui Chen
Keenon Werling
A. Wu
C. Karen Liu
17
6
0
20 Feb 2022
Previous
1
2
3
4
5
Next