Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.04490
Cited By
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
10 July 2019
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning"
50 / 211 papers shown
Title
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
22
25
0
25 Feb 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
24
54
0
25 Feb 2021
Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert
Alexander Terenin
Steindór Sæmundsson
M. Deisenroth
14
16
0
22 Feb 2021
Meta-Learning Dynamics Forecasting Using Task Inference
Rui Wang
Robin G. Walters
Rose Yu
OOD
AI4TS
AI4CE
24
31
0
20 Feb 2021
A Differential Geometry Perspective on Orthogonal Recurrent Models
Omri Azencot
N. Benjamin Erichson
M. Ben-Chen
Michael W. Mahoney
AI4CE
8
5
0
18 Feb 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
34
0
12 Feb 2021
Noisy Recurrent Neural Networks
S. H. Lim
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
12
52
0
09 Feb 2021
Continuous-Time Model-Based Reinforcement Learning
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
OffRL
13
52
0
09 Feb 2021
Physics-aware, probabilistic model order reduction with guaranteed stability
Sebastian Kaltenbach
P. Koutsourelakis
DiffM
AI4CE
8
15
0
14 Jan 2021
Optimal Energy Shaping via Neural Approximators
Stefano Massaroli
Michael Poli
Federico Califano
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
16
12
0
14 Jan 2021
Structured learning of rigid-body dynamics: A survey and unified view from a robotics perspective
A. R. Geist
Sebastian Trimpe
AI4CE
6
17
0
11 Dec 2020
Benchmarking Energy-Conserving Neural Networks for Learning Dynamics from Data
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
22
47
0
03 Dec 2020
Learning Principle of Least Action with Reinforcement Learning
Zehao Jin
J. Lin
Siao-Fong Li
11
3
0
24 Nov 2020
Nested Mixture of Experts: Cooperative and Competitive Learning of Hybrid Dynamical System
Junhyeok Ahn
Luis Sentis
26
3
0
20 Nov 2020
Physics-constrained Deep Learning of Multi-zone Building Thermal Dynamics
Ján Drgoňa
Aaron Tuor
V. Chandan
D. Vrabie
AI4CE
19
115
0
11 Nov 2020
NeuralSim: Augmenting Differentiable Simulators with Neural Networks
Eric Heiden
David Millard
Erwin Coumans
Yizhou Sheng
Gaurav Sukhatme
19
136
0
09 Nov 2020
Leveraging Forward Model Prediction Error for Learning Control
Sarah Bechtle
Bilal Hammoud
Akshara Rai
Franziska Meier
Ludovic Righetti
14
3
0
07 Nov 2020
Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
OffRL
29
33
0
03 Nov 2020
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
Marc Finzi
Ke Alexander Wang
A. Wilson
AI4CE
26
126
0
26 Oct 2020
LagNetViP: A Lagrangian Neural Network for Video Prediction
Christine Allen-Blanchette
Sushant Veer
Anirudha Majumdar
Naomi Ehrich Leonard
33
30
0
24 Oct 2020
Nonseparable Symplectic Neural Networks
S. Xiong
Yunjin Tong
Xingzhe He
Shuqi Yang
Cheng Yang
Bo Zhu
21
32
0
23 Oct 2020
A Differentiable Newton Euler Algorithm for Multi-body Model Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
8
11
0
19 Oct 2020
POMDPs in Continuous Time and Discrete Spaces
Bastian Alt
M. Schultheis
Heinz Koeppl
11
9
0
02 Oct 2020
The Role of Isomorphism Classes in Multi-Relational Datasets
Vijja Wichitwechkarn
Ben Day
Cristian Bodnar
Matthew Wales
Pietro Lió
43
0
0
30 Sep 2020
TorchDyn: A Neural Differential Equations Library
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
16
24
0
20 Sep 2020
Interpretable Sequence Learning for COVID-19 Forecasting
Sercan Ö. Arik
Chun-Liang Li
Jinsung Yoon
Rajarishi Sinha
Arkady Epshteyn
...
Martin Nikoltchev
Yash Sonthalia
Hootan Nakhost
Elli Kanal
Tomas Pfister
AI4TS
20
83
0
03 Aug 2020
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
23
159
0
16 Jul 2020
Augmenting Differentiable Simulators with Neural Networks to Close the Sim2Real Gap
Eric Heiden
David Millard
Erwin Coumans
Gaurav Sukhatme
19
21
0
12 Jul 2020
Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control
Yaofeng Desmond Zhong
Naomi Ehrich Leonard
DRL
AI4CE
19
43
0
03 Jul 2020
Learning Potentials of Quantum Systems using Deep Neural Networks
Arijit Sehanobish
H. Corzo
Onur Kara
David van Dijk
6
12
0
23 Jun 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
33
25
0
23 Jun 2020
Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM
Kunal Menda
J. Becdelievre
Jayesh K. Gupta
I. Kroo
Mykel J. Kochenderfer
Zachary Manchester
6
6
0
20 Jun 2020
Learning Dynamics Models with Stable Invariant Sets
Naoya Takeishi
Yoshinobu Kawahara
10
17
0
16 Jun 2020
Physics-aware Spatiotemporal Modules with Auxiliary Tasks for Meta-Learning
Sungyong Seo
Chuizheng Meng
Sirisha Rambhatla
Yan Liu
AI4CE
13
11
0
15 Jun 2020
On Second Order Behaviour in Augmented Neural ODEs
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lió
28
90
0
12 Jun 2020
Continuous-time system identification with neural networks: Model structures and fitting criteria
Marco Forgione
Dario Piga
6
65
0
03 Jun 2020
Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics
Manuel A. Roehrl
Thomas Runkler
Veronika Brandtstetter
Michel Tokic
Stefan Obermayer
PINN
19
77
0
29 May 2020
Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes
A. R. Geist
Sebastian Trimpe
12
20
0
23 Apr 2020
Structured Mechanical Models for Robot Learning and Control
Jayesh K. Gupta
Kunal Menda
Zachary Manchester
Mykel J. Kochenderfer
DRL
18
34
0
21 Apr 2020
In-Hand Object-Dynamics Inference using Tactile Fingertips
Balakumar Sundaralingam
Tucker Hermans
6
30
0
30 Mar 2020
Learning to Fly via Deep Model-Based Reinforcement Learning
Philip Becker-Ehmck
Maximilian Karl
Jan Peters
Patrick van der Smagt
SSL
32
37
0
19 Mar 2020
SAPIEN: A SimulAted Part-based Interactive ENvironment
Fanbo Xiang
Yuzhe Qin
Kaichun Mo
Yikuan Xia
Hao Zhu
...
He-Nan Wang
Li Yi
Angel X. Chang
Leonidas J. Guibas
Hao Su
218
487
0
19 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
13
141
0
04 Mar 2020
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
34
78
0
20 Feb 2020
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
16
33
0
05 Feb 2020
Encoding Physical Constraints in Differentiable Newton-Euler Algorithm
Giovanni Sutanto
Austin S. Wang
Yixin Lin
Mustafa Mukadam
Gaurav Sukhatme
Akshara Rai
Franziska Meier
88
54
0
24 Jan 2020
Automatic Differentiation and Continuous Sensitivity Analysis of Rigid Body Dynamics
David Millard
Eric Heiden
Shubham Agrawal
Gaurav Sukhatme
AI4CE
19
13
0
22 Jan 2020
Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework
Wanxin Jin
Zhaoran Wang
Zhuoran Yang
Shaoshuai Mou
24
77
0
30 Dec 2019
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
24
0
0
22 Oct 2019
Previous
1
2
3
4
5
Next