Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.04490
Cited By
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
10 July 2019
M. Lutter
Christian Ritter
Jan Peters
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning"
50 / 211 papers shown
Title
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
21
32
0
17 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
15
39
0
10 Feb 2022
Spectrally Adapted Physics-Informed Neural Networks for Solving Unbounded Domain Problems
Mingtao Xia
Lucas Böttcher
T. Chou
16
19
0
06 Feb 2022
Knowledge-Integrated Informed AI for National Security
Anu Myne
Kevin J. Leahy
Ryan Soklaski
19
0
0
04 Feb 2022
Learning Physics-Consistent Particle Interactions
Zhichao Han
David S. Kammer
Olga Fink
11
7
0
01 Feb 2022
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
Rui Wang
Robin G. Walters
Rose Yu
32
73
0
28 Jan 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
38
27
0
25 Jan 2022
Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning
Saul Santos
Monica Ekal
R. Ventura
23
5
0
20 Jan 2022
Control of Dual-Sourcing Inventory Systems using Recurrent Neural Networks
Lucas Böttcher
Thomas Asikis
I. Fragkos
BDL
16
10
0
16 Jan 2022
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
27
28
0
16 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
67
26
0
06 Dec 2021
Physically Consistent Neural Networks for building thermal modeling: theory and analysis
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
PINN
AI4CE
57
84
0
06 Dec 2021
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
23
3
0
30 Nov 2021
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
9
5
0
19 Nov 2021
Physics-informed neural networks via stochastic Hamiltonian dynamics learning
Chandrajit L. Bajaj
Minh Nguyen
13
1
0
15 Nov 2021
Climate Modeling with Neural Diffusion Equations
JeeHyun Hwang
Jeongwhan Choi
Hwan-Kyu Choi
Kookjin Lee
Dongeun Lee
Noseong Park
DiffM
19
22
0
11 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
22
28
0
09 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
28
93
0
02 Nov 2021
Robot Learning from Randomized Simulations: A Review
Fabio Muratore
Fabio Ramos
Greg Turk
Wenhao Yu
Michael Gienger
Jan Peters
AI4CE
10
79
0
01 Nov 2021
Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC
Felix Bünning
B. Huber
Adrian Schalbetter
Ahmed Aboudonia
Mathias Hudoba de Badyn
Philipp Heer
Roy S. Smith
John Lygeros
AI4CE
14
65
0
29 Oct 2021
A Differentiable Newton-Euler Algorithm for Real-World Robotics
M. Lutter
Vallijah Subasri
Joe Watson
Frank Rudzicz
22
7
0
24 Oct 2021
Extracting Dynamical Models from Data
M. Zimmer
20
1
0
13 Oct 2021
Lagrangian Neural Network with Differentiable Symmetries and Relational Inductive Bias
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
47
4
0
07 Oct 2021
Continuous-Time Fitted Value Iteration for Robust Policies
M. Lutter
Boris Belousov
Shie Mannor
D. Fox
Animesh Garg
Jan Peters
8
9
0
05 Oct 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
33
39
0
05 Oct 2021
OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation
J. Wong
Viktor Makoviychuk
Anima Anandkumar
Yuke Zhu
29
11
0
02 Oct 2021
Neural Network Verification in Control
M. Everett
AAML
32
16
0
30 Sep 2021
Learning Dynamics Models for Model Predictive Agents
M. Lutter
Leonard Hasenclever
Arunkumar Byravan
Gabriel Dulac-Arnold
Piotr Trochim
N. Heess
J. Merel
Yuval Tassa
AI4CE
57
26
0
29 Sep 2021
Lyapunov-stable neural-network control
Hongkai Dai
Benoit Landry
Lujie Yang
Marco Pavone
Russ Tedrake
10
118
0
29 Sep 2021
Modular Neural Ordinary Differential Equations
Max Zhu
P. Lio
Jacob Moss
PINN
32
2
0
15 Sep 2021
Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
PINN
AI4CE
39
68
0
14 Sep 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
24
0
11 Sep 2021
Plug and Play, Model-Based Reinforcement Learning
Majid Abdolshah
Hung Le
T. G. Karimpanal
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
OCL
OffRL
11
0
0
20 Aug 2021
ST-PCNN: Spatio-Temporal Physics-Coupled Neural Networks for Dynamics Forecasting
Yu Huang
James Li
Min Shi
H. Zhuang
Xingquan Zhu
Laurent Chérubin
James H. VanZwieten
Yufei Tang
AI4CE
PINN
23
6
0
12 Aug 2021
Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations
Xing Chen
Flavio Abreu Araujo
M. Riou
J. Torrejon
D. Ravelosona
W. Kang
Weisheng Zhao
Julie Grollier
D. Querlioz
19
40
0
23 Jul 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
25
43
0
16 Jul 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
33
42
0
23 Jun 2021
Controlling Neural Networks with Rule Representations
Sungyong Seo
Sercan Ö. Arik
Jinsung Yoon
Xiang Zhang
Kihyuk Sohn
Tomas Pfister
OOD
AI4CE
27
35
0
14 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Forced Variational Integrator Networks for Prediction and Control of Mechanical Systems
Aaron J. Havens
Girish Chowdhary
PINN
OOD
AI4CE
11
8
0
05 Jun 2021
Machine-Learning Non-Conservative Dynamics for New-Physics Detection
Ziming Liu
Bohan Wang
Qi Meng
Wei Chen
M. Tegmark
Tie-Yan Liu
PINN
AI4CE
9
15
0
31 May 2021
SyReNets: Symbolic Residual Neural Networks
Carlos Magno Catharino Olsson Valle
Sami Haddadin
11
1
0
30 May 2021
Simulated Data Generation Through Algorithmic Force Coefficient Estimation for AI-Based Robotic Projectile Launch Modeling
Sajiv Shah
Ayaan Haque
Fei Liu
6
0
0
09 May 2021
Training Structured Mechanical Models by Minimizing Discrete Euler-Lagrange Residual
Kunal Menda
Jayesh K. Gupta
Zachary Manchester
Mykel J. Kochenderfer
16
0
0
05 May 2021
Weak Form Generalized Hamiltonian Learning
Kevin Course
Trefor W. Evans
P. Nair
AI4CE
13
9
0
11 Apr 2021
GEM: Group Enhanced Model for Learning Dynamical Control Systems
Philippe Hansen-Estruch
Wenling Shang
Lerrel Pinto
Pieter Abbeel
Stas Tiomkin
AI4CE
25
2
0
07 Apr 2021
Learning Deep Energy Shaping Policies for Stability-Guaranteed Manipulation
S. A. Khader
Hang Yin
Pietro Falco
Danica Kragic
6
12
0
30 Mar 2021
Implicit energy regularization of neural ordinary-differential-equation control
Lucas Böttcher
Nino Antulov-Fantulin
Thomas Asikis
21
66
0
11 Mar 2021
Data-driven Prediction of General Hamiltonian Dynamics via Learning Exactly-Symplectic Maps
Ren-Chuen Chen
Molei Tao
24
49
0
09 Mar 2021
Previous
1
2
3
4
5
Next