ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09615
  4. Cited By
Towards Realistic Individual Recourse and Actionable Explanations in
  Black-Box Decision Making Systems

Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems

22 July 2019
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
    FaML
ArXivPDFHTML

Papers citing "Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems"

16 / 16 papers shown
Title
Graph Counterfactual Explainable AI via Latent Space Traversal
Graph Counterfactual Explainable AI via Latent Space Traversal
Andreas Abildtrup Hansen
Paraskevas Pegios
Anna Calissano
Aasa Feragen
OOD
BDL
AAML
92
0
0
15 Jan 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
90
16
0
10 Jan 2025
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
102
1
0
18 Oct 2024
Learning Actionable Counterfactual Explanations in Large State Spaces
Learning Actionable Counterfactual Explanations in Large State Spaces
Keziah Naggita
Matthew R. Walter
Avrim Blum
OffRL
43
0
0
25 Apr 2024
Interpretable Credit Application Predictions With Counterfactual
  Explanations
Interpretable Credit Application Predictions With Counterfactual Explanations
Rory Mc Grath
Luca Costabello
Chan Le Van
Paul Sweeney
F. Kamiab
Zhao Shen
Freddy Lecue
FAtt
31
109
0
13 Nov 2018
Actionable Recourse in Linear Classification
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
84
545
0
18 Sep 2018
Fairness Through Causal Awareness: Learning Latent-Variable Models for
  Biased Data
Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
38
133
0
07 Sep 2018
Handling Incomplete Heterogeneous Data using VAEs
Handling Incomplete Heterogeneous Data using VAEs
A. Nazábal
Pablo Martínez Olmos
Zoubin Ghahramani
Isabel Valera
37
345
0
10 Jul 2018
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
86
587
0
21 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
54
2,332
0
01 Nov 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
129
738
0
24 May 2017
Tutorial on Variational Autoencoders
Tutorial on Variational Autoencoders
Carl Doersch
BDL
DRL
72
1,736
0
19 Jun 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
56
1,312
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
74
1,827
0
31 May 2016
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
198
8,351
0
28 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
336
16,972
0
20 Dec 2013
1