ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12720
  4. Cited By
Exploring large scale public medical image datasets

Exploring large scale public medical image datasets

Academic Radiology (Acad Radiol), 2019
30 July 2019
Luke Oakden-Rayner
ArXiv (abs)PDFHTML

Papers citing "Exploring large scale public medical image datasets"

35 / 35 papers shown
Title
Rethinking Reasoning: A Survey on Reasoning-based Backdoors in LLMs
Rethinking Reasoning: A Survey on Reasoning-based Backdoors in LLMs
Man Hu
Xinyi Wu
Zuofeng Suo
Jinbo Feng
Linghui Meng
Yanhao Jia
Anh Tuan Luu
Shuai Zhao
AAMLLRM
96
0
0
09 Oct 2025
Glaucoma Detection and Structured OCT Report Generation via a Fine-tuned Multimodal Large Language Model
Glaucoma Detection and Structured OCT Report Generation via a Fine-tuned Multimodal Large Language Model
Jalil Jalili
Yashraj Gavhane
Evan Walker
Anna Heinke
C. Bowd
...
Jeffrey M. Liebmann
Sally L. Baxter
R. Weinreb
L. Zangwill
Mark Christopher
88
0
0
01 Oct 2025
Faithful, Interpretable Chest X-ray Diagnosis with Anti-Aliased B-cos Networks
Faithful, Interpretable Chest X-ray Diagnosis with Anti-Aliased B-cos Networks
Marcel Kleinmann
Shashank Agnihotri
Margret Keuper
146
0
0
22 Jul 2025
Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
Yifan Jiang
Yannick Lemaréchal
Sophie Plante
Josée Bafaro
Jessica Abi-Rjeile
Philippe Joubert
Philippe Després
Venkata Manem
MedImDiffM
308
3
0
21 Feb 2025
Copycats: the many lives of a publicly available medical imaging dataset
Copycats: the many lives of a publicly available medical imaging dataset
Amelia Jiménez-Sánchez
Natalia-Rozalia Avlona
Dovile Juodelyte
Théo Sourget
Caroline Vang-Larsen
Anna Rogers
Hubert Dariusz Zajkac
Veronika Cheplygina
255
4
0
09 Feb 2024
Exploring scalable medical image encoders beyond text supervision
Exploring scalable medical image encoders beyond text supervision
Fernando Pérez-García
Harshita Sharma
Sam Bond-Taylor
Kenza Bouzid
Valentina Salvatelli
...
Maria T. A. Wetscherek
Noel C. F. Codella
Stephanie L. Hyland
Javier Alvarez-Valle
Ozan Oktay
LM&MAMedIm
441
9
0
19 Jan 2024
Nodule detection and generation on chest X-rays: NODE21 Challenge
Nodule detection and generation on chest X-rays: NODE21 ChallengeIEEE Transactions on Medical Imaging (IEEE TMI), 2024
Ecem Sogancioglu
Bram van Ginneken
F. Behrendt
M. Bengs
Alexander Schlaefer
...
N. Hendrix
Colin Jacobs
Ward Hendrix
Clara I. Sánchez
K. Murphy
108
14
0
04 Jan 2024
Augmenting Chest X-ray Datasets with Non-Expert Annotations
Augmenting Chest X-ray Datasets with Non-Expert AnnotationsAnnual Conference on Medical Image Understanding and Analysis (MIUA), 2023
Veronika Cheplygina
Cathrine Damgaard
Dovile Juodelyte
Veronika Cheplygina
Amelia Jiménez-Sánchez
244
5
0
05 Sep 2023
Ground Truth Or Dare: Factors Affecting The Creation Of Medical Datasets
  For Training AI
Ground Truth Or Dare: Factors Affecting The Creation Of Medical Datasets For Training AIAAAI/ACM Conference on AI, Ethics, and Society (AIES), 2023
H. D. Zając
Natalia-Rozalia Avlona
T. O. Andersen
F. Kensing
Irina Shklovski
120
28
0
12 Aug 2023
Automated Labeling of German Chest X-Ray Radiology Reports using Deep
  Learning
Automated Labeling of German Chest X-Ray Radiology Reports using Deep Learning
Alessandro Wollek
Philip Haitzer
Thomas Sedlmeyr
Sardi Hyska
J. Rueckel
B. Sabel
Michael Ingrisch
Tobias Lasser
138
0
0
09 Jun 2023
Can Deep Learning Reliably Recognize Abnormality Patterns on Chest
  X-rays? A Multi-Reader Study Examining One Month of AI Implementation in
  Everyday Radiology Clinical Practice
Can Deep Learning Reliably Recognize Abnormality Patterns on Chest X-rays? A Multi-Reader Study Examining One Month of AI Implementation in Everyday Radiology Clinical Practice
Daniel Kvak
Anna Chromcová
P. Ovesná
Jakub Dandár
Marek Biroš
R. Hrubý
D. Dufek
Marija Pajdaković
69
1
0
17 May 2023
On Evaluating Adversarial Robustness of Chest X-ray Classification:
  Pitfalls and Best Practices
On Evaluating Adversarial Robustness of Chest X-ray Classification: Pitfalls and Best Practices
Salah Ghamizi
Maxime Cordy
Michail Papadakis
Yves Le Traon
OOD
114
4
0
15 Dec 2022
Rethinking Generalization: The Impact of Annotation Style on Medical
  Image Segmentation
Rethinking Generalization: The Impact of Annotation Style on Medical Image SegmentationMachine Learning for Biomedical Imaging (MLBI), 2022
Brennan Nichyporuk
Jillian Cardinell
Justin Szeto
Raghav Mehta
Jean-Pierre Falet
Douglas L. Arnold
Sotirios A. Tsaftaris
Tal Arbel
288
11
0
31 Oct 2022
Did You Get What You Paid For? Rethinking Annotation Cost of Deep
  Learning Based Computer Aided Detection in Chest Radiographs
Did You Get What You Paid For? Rethinking Annotation Cost of Deep Learning Based Computer Aided Detection in Chest RadiographsInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Tae Soo Kim
Geonwoon Jang
Sanghyup Lee
Thijs Kooi
134
9
0
30 Sep 2022
An Accurate and Explainable Deep Learning System Improves Interobserver
  Agreement in the Interpretation of Chest Radiograph
An Accurate and Explainable Deep Learning System Improves Interobserver Agreement in the Interpretation of Chest RadiographIEEE Access (IEEE Access), 2021
Hieu H. Pham
H. Q. Nguyen
H. T. Nguyen
T. Le
M. Dao
MedIm
142
20
0
06 Aug 2022
BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray
  Classification
BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray ClassificationIEEE International Conference on Computer Vision (ICCV), 2022
Yuanhong Chen
Fengbei Liu
Hu Wang
Chong Wang
Yu Tian
Yuyuan Liu
G. Carneiro
NoLa
261
15
0
03 Mar 2022
Data Shapley Value for Handling Noisy Labels: An application in
  Screening COVID-19 Pneumonia from Chest CT Scans
Data Shapley Value for Handling Noisy Labels: An application in Screening COVID-19 Pneumonia from Chest CT Scans
Nastaran Enshaei
M. Rafiee
Arash Mohammadi
F. Naderkhani
NoLaTDI
103
2
0
17 Oct 2021
CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
  Non-Contrast to Contrast CT Translation
CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for Non-Contrast to Contrast CT Translation
Nicolae-Cătălin Ristea
A. Miron
O. Savencu
Mariana-Iuliana Georgescu
N. Verga
Fahad Shahbaz Khan
Radu Tudor Ionescu
ViTMedIm
407
30
0
12 Oct 2021
DICOM Imaging Router: An Open Deep Learning Framework for Classification
  of Body Parts from DICOM X-ray Scans
DICOM Imaging Router: An Open Deep Learning Framework for Classification of Body Parts from DICOM X-ray ScansmedRxiv (medRxiv), 2021
Hieu H. Pham
D. Do
H. Nguyen
MedIm
126
19
0
14 Aug 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A
  Survey of Challenges and Solutions
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and SolutionsIEEE Access (IEEE Access), 2021
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaMLAILawOOD
205
34
0
20 Jul 2021
Deep Learning for Chest X-ray Analysis: A Survey
Deep Learning for Chest X-ray Analysis: A Survey
Ecem Sogancioglu
E. Çallı
Bram van Ginneken
K. G. V. Leeuwen
K. Murphy
LM&MA
193
387
0
15 Mar 2021
Deep Learning-based Patient Re-identification Is able to Exploit the
  Biometric Nature of Medical Chest X-ray Data
Deep Learning-based Patient Re-identification Is able to Exploit the Biometric Nature of Medical Chest X-ray DataScientific Reports (Sci Rep), 2021
Kai Packhauser
Sebastian Gündel
Nicolas Münster
Christopher Syben
Vincent Christlein
Andreas Maier
OOD
177
58
0
15 Mar 2021
NVUM: Non-Volatile Unbiased Memory for Robust Medical Image
  Classification
NVUM: Non-Volatile Unbiased Memory for Robust Medical Image ClassificationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021
Fengbei Liu
Yuanhong Chen
Yu Tian
Yuyuan Liu
Chong Wang
Vasileios Belagiannis
G. Carneiro
248
14
0
06 Mar 2021
VisualCheXbert: Addressing the Discrepancy Between Radiology Report
  Labels and Image Labels
VisualCheXbert: Addressing the Discrepancy Between Radiology Report Labels and Image LabelsACM Conference on Health, Inference, and Learning (CHIL), 2021
Saahil Jain
Akshay Smit
Steven QH Truong
C. Nguyen
Minh-Thanh Huynh
Mudit Jain
Victoria A Young
A. Ng
M. Lungren
Pranav Rajpurkar
MedIm
151
37
0
23 Feb 2021
Data Valuation for Medical Imaging Using Shapley Value: Application on A
  Large-scale Chest X-ray Dataset
Data Valuation for Medical Imaging Using Shapley Value: Application on A Large-scale Chest X-ray Dataset
Siyi Tang
Amirata Ghorbani
R. Yamashita
Sameer Rehman
Jared A. Dunnmon
James Zou
D. Rubin
TDI
106
97
0
15 Oct 2020
Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated
  Using Progressively Growing GANs
Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated Using Progressively Growing GANs
Bradley Max Segal
D. Rubin
G. Rubin
Adam Pantanowitz
MedIm
160
43
0
07 Oct 2020
Ethical Machine Learning in Health Care
Ethical Machine Learning in Health CareAnnual Review of Biomedical Data Science (ARBDS), 2020
Irene Y. Chen
Emma Pierson
Sherri Rose
Shalmali Joshi
Kadija Ferryman
Marzyeh Ghassemi
AILaw
355
459
0
22 Sep 2020
Deep Hiearchical Multi-Label Classification Applied to Chest X-Ray
  Abnormality Taxonomies
Deep Hiearchical Multi-Label Classification Applied to Chest X-Ray Abnormality Taxonomies
Haomin Chen
S. Miao
Daguang Xu
Gregory Hager
Adam P. Harrison
130
32
0
11 Sep 2020
A Multisite, Report-Based, Centralized Infrastructure for Feedback and
  Monitoring of Radiology AI/ML Development and Clinical Deployment
A Multisite, Report-Based, Centralized Infrastructure for Feedback and Monitoring of Radiology AI/ML Development and Clinical Deployment
Menashe Benjamin
G. Engelhard
A. Aisen
Yinon Aradi
Elad Benjamin
76
1
0
31 Aug 2020
On the Composition and Limitations of Publicly Available COVID-19 X-Ray
  Imaging Datasets
On the Composition and Limitations of Publicly Available COVID-19 X-Ray Imaging Datasets
Beatriz Garcia Santa Cruz
J. Sölter
M. Bossa
A. Husch
OOD
189
11
0
26 Aug 2020
Learning across label confidence distributions using Filtered Transfer
  Learning
Learning across label confidence distributions using Filtered Transfer LearningInternational Conference on Machine Learning and Applications (ICMLA), 2020
S. Tonekaboni
Andrew E. Brereton
Z. Safikhani
A. Windemuth
B. Haibe-Kains
S. MacKinnon
FedML
73
3
0
03 Jun 2020
PanNuke Dataset Extension, Insights and Baselines
PanNuke Dataset Extension, Insights and Baselines
Jevgenij Gamper
Navid Alemi Koohbanani
Ksenija Benes
S. Graham
Mostafa Jahanifar
S. Khurram
A. Azam
K. Hewitt
Nasir M. Rajpoot
655
212
0
24 Mar 2020
On the limits of cross-domain generalization in automated X-ray
  prediction
On the limits of cross-domain generalization in automated X-ray predictionInternational Conference on Medical Imaging with Deep Learning (MIDL), 2020
Joseph Paul Cohen
Mohammad Hashir
Rupert Brooks
H. Bertrand
OOD
212
143
0
06 Feb 2020
Hidden Stratification Causes Clinically Meaningful Failures in Machine
  Learning for Medical Imaging
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical ImagingACM Conference on Health, Inference, and Learning (CHIL), 2019
Luke Oakden-Rayner
Jared A. Dunnmon
G. Carneiro
Christopher Ré
OOD
389
424
0
27 Sep 2019
Can we trust deep learning models diagnosis? The impact of domain shift
  in chest radiograph classification
Can we trust deep learning models diagnosis? The impact of domain shift in chest radiograph classification
E. Pooch
P. Ballester
Rodrigo C. Barros
OOD
209
140
0
03 Sep 2019
1