Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05783
Cited By
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
15 August 2019
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization"
9 / 9 papers shown
Title
Fair Text Classification via Transferable Representations
Thibaud Leteno
Michael Perrot
Charlotte Laclau
Antoine Gourru
Christophe Gravier
FaML
88
0
0
10 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
51
0
0
03 Feb 2025
On the Nonconvexity of Push-Forward Constraints and Its Consequences in Machine Learning
Lucas de Lara
Mathis Deronzier
Alberto González Sanz
Virgile Foy
22
0
0
12 Mar 2024
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
36
9
0
16 May 2023
How optimal transport can tackle gender biases in multi-class neural-network classifiers for job recommendations?
Fanny Jourdan
Titon Tshiongo Kaninku
Nicholas M. Asher
Jean-Michel Loubes
Laurent Risser
FaML
28
4
0
27 Feb 2023
Linking convolutional kernel size to generalization bias in face analysis CNNs
Hao Liang
J. O. Caro
Vikram Maheshri
Ankit B. Patel
Guha Balakrishnan
CVBM
CML
23
0
0
07 Feb 2023
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
36
32
0
19 Apr 2022
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
256
492
0
31 Dec 2020
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1