ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.05783
  4. Cited By
Tackling Algorithmic Bias in Neural-Network Classifiers using
  Wasserstein-2 Regularization

Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization

15 August 2019
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
ArXivPDFHTML

Papers citing "Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization"

9 / 9 papers shown
Title
Fair Text Classification via Transferable Representations
Thibaud Leteno
Michael Perrot
Charlotte Laclau
Antoine Gourru
Christophe Gravier
FaML
88
0
0
10 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
51
0
0
03 Feb 2025
On the Nonconvexity of Push-Forward Constraints and Its Consequences in Machine Learning
On the Nonconvexity of Push-Forward Constraints and Its Consequences in Machine Learning
Lucas de Lara
Mathis Deronzier
Alberto González Sanz
Virgile Foy
22
0
0
12 Mar 2024
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth
  Costs
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
36
9
0
16 May 2023
How optimal transport can tackle gender biases in multi-class
  neural-network classifiers for job recommendations?
How optimal transport can tackle gender biases in multi-class neural-network classifiers for job recommendations?
Fanny Jourdan
Titon Tshiongo Kaninku
Nicholas M. Asher
Jean-Michel Loubes
Laurent Risser
FaML
28
4
0
27 Feb 2023
Linking convolutional kernel size to generalization bias in face
  analysis CNNs
Linking convolutional kernel size to generalization bias in face analysis CNNs
Hao Liang
J. O. Caro
Vikram Maheshri
Ankit B. Patel
Guha Balakrishnan
CVBM
CML
23
0
0
07 Feb 2023
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
36
32
0
19 Apr 2022
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
256
492
0
31 Dec 2020
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1