ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.11843
  4. Cited By
Partitioned integrators for thermodynamic parameterization of neural
  networks
v1v2 (latest)

Partitioned integrators for thermodynamic parameterization of neural networks

30 August 2019
Benedict Leimkuhler
Charles Matthews
Tiffany J. Vlaar
    ODL
ArXiv (abs)PDFHTML

Papers citing "Partitioned integrators for thermodynamic parameterization of neural networks"

9 / 9 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
78
0
0
01 Jul 2025
Structured Stochastic Gradient MCMC
Structured Stochastic Gradient MCMC
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
76
13
0
19 Jul 2021
What can linear interpolation of neural network loss landscapes tell us?
What can linear interpolation of neural network loss landscapes tell us?
Tiffany J. Vlaar
Jonathan Frankle
MoMe
72
28
0
30 Jun 2021
Better Training using Weight-Constrained Stochastic Dynamics
Better Training using Weight-Constrained Stochastic Dynamics
Benedict Leimkuhler
Tiffany J. Vlaar
Timothée Pouchon
Amos Storkey
43
9
0
20 Jun 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
84
26
0
11 Jun 2021
Exact Langevin Dynamics with Stochastic Gradients
Exact Langevin Dynamics with Stochastic Gradients
Adrià Garriga-Alonso
Vincent Fortuin
BDL
72
33
0
02 Feb 2021
A Perspective on Deep Learning for Molecular Modeling and Simulations
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Yue Yang
Y. Gao
AI4CE
113
8
0
25 Apr 2020
Simulating sticky particles: A Monte Carlo method to sample a
  stratification
Simulating sticky particles: A Monte Carlo method to sample a stratification
Miranda C. Holmes-Cerfon
37
10
0
21 Dec 2019
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for
  posterior sampling in machine learning applications
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications
Frederik Heber
Zofia Trstanova
Benedict Leimkuhler
26
1
0
20 Mar 2019
1