ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.02820
  4. Cited By
Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for
  Factor Disentanglement

Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for Factor Disentanglement

6 September 2019
Minyoung Kim
Yuting Wang
Pritish Sahu
Vladimir Pavlovic
    CoGe
    BDL
    CML
    DRL
ArXivPDFHTML

Papers citing "Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for Factor Disentanglement"

2 / 2 papers shown
Title
DualContrast: Unsupervised Disentangling of Content and Transformations with Implicit Parameterization
DualContrast: Unsupervised Disentangling of Content and Transformations with Implicit Parameterization
M. R. Uddin
Min Xu
48
0
0
27 May 2024
EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape
  Generation
EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation
Shidi Li
Miaomiao Liu
Christian J. Walder
3DPC
49
28
0
13 Oct 2021
1