ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06359
  4. Cited By
Localizing Changes in High-Dimensional Vector Autoregressive Processes

Localizing Changes in High-Dimensional Vector Autoregressive Processes

12 September 2019
Daren Wang
Yi Yu
Alessandro Rinaldo
Rebecca Willett
ArXivPDFHTML

Papers citing "Localizing Changes in High-Dimensional Vector Autoregressive Processes"

7 / 7 papers shown
Title
Online Kernel CUSUM for Change-Point Detection
Online Kernel CUSUM for Change-Point Detection
S. Wei
Yao Xie
19
11
0
28 Nov 2022
Graphical models for nonstationary time series
Graphical models for nonstationary time series
Sumanta Basu
S. Subba Rao
60
6
0
17 Sep 2021
Multiple Change Point Detection in Structured VAR Models: the VARDetect
  R Package
Multiple Change Point Detection in Structured VAR Models: the VARDetect R Package
Peiliang Bai
Yue Bai
Abolfazl Safikhani
George Michailidis
16
1
0
23 May 2021
Optimal multiple change-point detection for high-dimensional data
Optimal multiple change-point detection for high-dimensional data
Emmanuel Pilliat
Alexandra Carpentier
Nicolas Verzélen
25
14
0
16 Nov 2020
Factor modeling for high-dimensional time series: Inference for the
  number of factors
Factor modeling for high-dimensional time series: Inference for the number of factors
Clifford Lam
Q. Yao
41
476
0
04 Jun 2012
Discovering Graphical Granger Causality Using the Truncating Lasso
  Penalty
Discovering Graphical Granger Causality Using the Truncating Lasso Penalty
Ali Shojaie
George Michailidis
CML
68
214
0
03 Jul 2010
Break detection in the covariance structure of multivariate time series
  models
Break detection in the covariance structure of multivariate time series models
Alexander Aue
Siegfried Hormann
Lajos Horváth
M. Reimherr
150
362
0
19 Nov 2009
1