ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.13739
  4. Cited By
Equivariant Hamiltonian Flows

Equivariant Hamiltonian Flows

30 September 2019
Danilo Jimenez Rezende
S. Racanière
I. Higgins
Peter Toth
ArXiv (abs)PDFHTML

Papers citing "Equivariant Hamiltonian Flows"

31 / 31 papers shown
Title
Hamiltonian Normalizing Flows as kinetic PDE solvers: application to the 1D Vlasov-Poisson Equations
Hamiltonian Normalizing Flows as kinetic PDE solvers: application to the 1D Vlasov-Poisson Equations
Vincent Souveton
Sébastien Terrana
94
0
0
07 May 2025
Transferable Boltzmann Generators
Transferable Boltzmann Generators
Leon Klein
Frank Noé
137
19
0
20 Jun 2024
Neural Approximate Mirror Maps for Constrained Diffusion Models
Neural Approximate Mirror Maps for Constrained Diffusion Models
Berthy Feng
Ricardo Baptista
Katherine Bouman
MedImDiffM
132
4
0
18 Jun 2024
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and
  reduced complexity
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
86
3
0
03 Feb 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
79
17
0
21 Jan 2023
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
109
92
0
18 Oct 2022
A tradeoff between universality of equivariant models and learnability
  of symmetries
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
64
2
0
17 Oct 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
95
46
0
17 Mar 2022
Data-driven emergence of convolutional structure in neural networks
Data-driven emergence of convolutional structure in neural networks
Alessandro Ingrosso
Sebastian Goldt
120
38
0
01 Feb 2022
Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
  Docking
Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking
O. Ganea
Xinyuan Huang
Charlotte Bunne
Yatao Bian
Regina Barzilay
Tommi Jaakkola
Andreas Krause
112
154
0
15 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
89
8
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
119
28
0
09 Nov 2021
Equivariant Finite Normalizing Flows
Equivariant Finite Normalizing Flows
A. Bose
Marcus A. Brubaker
I. Kobyzev
DRL
97
10
0
16 Oct 2021
Augmenting Imitation Experience via Equivariant Representations
Augmenting Imitation Experience via Equivariant Representations
Dhruv Sharma
Ali Kuwajerwala
Florian Shkurti
105
2
0
14 Oct 2021
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDLTPMAI4CE
82
4
0
12 Oct 2021
Equivariant Manifold Flows
Equivariant Manifold Flows
Isay Katsman
Aaron Lou
Derek Lim
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
AI4CE
72
25
0
19 Jul 2021
Riemannian Convex Potential Maps
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
84
22
0
18 Jun 2021
Learning Equivariant Energy Based Models with Equivariant Stein
  Variational Gradient Descent
Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent
P. Jaini
Lars Holdijk
Max Welling
78
11
0
15 Jun 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
99
182
0
19 May 2021
The Hintons in your Neural Network: a Quantum Field Theory View of Deep
  Learning
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning
Roberto Bondesan
Max Welling
80
7
0
08 Mar 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
113
1,038
0
19 Feb 2021
Learning Poisson systems and trajectories of autonomous systems via
  Poisson neural networks
Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks
Pengzhan Jin
Zhen Zhang
Ioannis G. Kevrekidis
George Karniadakis
95
50
0
05 Dec 2020
Improved Variational Bayesian Phylogenetic Inference with Normalizing
  Flows
Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
Cheng Zhang
BDL
75
27
0
01 Dec 2020
CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations
CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations
Davis Rempe
Tolga Birdal
Yongheng Zhao
Zan Gojcic
Srinath Sridhar
Leonidas Guibas
3DPC
128
72
0
06 Aug 2020
Learning Physical Constraints with Neural Projections
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DVAI4CE
100
26
0
23 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric
  Densities
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
140
279
0
03 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
83
29
0
02 Jun 2020
SympNets: Intrinsic structure-preserving symplectic networks for
  identifying Hamiltonian systems
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
105
21
0
11 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
217
1,719
0
05 Dec 2019
Equivariant Flows: sampling configurations for multi-body systems with
  symmetric energies
Equivariant Flows: sampling configurations for multi-body systems with symmetric energies
Jonas Köhler
Leon Klein
Frank Noé
91
91
0
02 Oct 2019
Neural Canonical Transformation with Symplectic Flows
Neural Canonical Transformation with Symplectic Flows
Shuo-Hui Li
Chen Dong
Linfeng Zhang
Lei Wang
DRL
117
28
0
30 Sep 2019
1