ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00204
  4. Cited By
TriMap: Large-scale Dimensionality Reduction Using Triplets
v1v2 (latest)

TriMap: Large-scale Dimensionality Reduction Using Triplets

1 October 2019
Ehsan Amid
Manfred K. Warmuth
ArXiv (abs)PDFHTML

Papers citing "TriMap: Large-scale Dimensionality Reduction Using Triplets"

50 / 52 papers shown
Probabilistic Foundations of Fuzzy Simplicial Sets for Nonlinear Dimensionality Reduction
Probabilistic Foundations of Fuzzy Simplicial Sets for Nonlinear Dimensionality Reduction
Janis Keck
Lukas Silvester Barth
Fatemeh
Fahimi
Parvaneh Joharinad
Jürgen Jost
65
0
0
03 Dec 2025
t-SNE Exaggerates Clusters, Provably
t-SNE Exaggerates Clusters, Provably
Noah Bergam
Szymon Snoeck
Nakul Verma
135
0
0
09 Oct 2025
UMATO: Bridging Local and Global Structures for Reliable Visual Analytics with Dimensionality Reduction
UMATO: Bridging Local and Global Structures for Reliable Visual Analytics with Dimensionality ReductionIEEE Transactions on Visualization and Computer Graphics (TVCG), 2025
Hyeon Jeon
Kwon Ko
S. Lee
Jake Hyun
Taehyun Yang
Gyehun Go
Jaemin Jo
Jinwook Seo
196
1
0
22 Aug 2025
DREAMS: Preserving both Local and Global Structure in Dimensionality Reduction
DREAMS: Preserving both Local and Global Structure in Dimensionality Reduction
Noël Kury
D. Kobak
Sebastian Damrich
78
1
0
19 Aug 2025
Uncovering Latent Connections in Indigenous Heritage: Semantic Pipelines for Cultural Preservation in Brazil
Uncovering Latent Connections in Indigenous Heritage: Semantic Pipelines for Cultural Preservation in Brazil
Luis Vitor Zerkowski
Nina S. T. Hirata
92
0
0
31 Jul 2025
The interplay of robustness and generalization in quantum machine learning
Julian Berberich
Tobias Fellner
Christian Holm
AAML
149
3
0
10 Jun 2025
Fast Geometric Embedding for Node Influence Maximization
Fast Geometric Embedding for Node Influence Maximization
Alexander Kolpakov
Igor Rivin
GNN
179
1
0
09 Jun 2025
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
Zihao Chen
Wenyong Wang
Jiachen Yang
Yu Xiang
277
0
0
07 May 2025
Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Zhanke Zhou
Zhaocheng Zhu
Xuan Li
Mikhail Galkin
Xiao Feng
Sanmi Koyejo
Jian Tang
Bo Han
LRM
443
12
0
28 Mar 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
1.1K
1
0
12 Mar 2025
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservation
Preserving clusters and correlations: a dimensionality reduction method for exceptionally high global structure preservationbioRxiv (bioRxiv), 2025
Jacob Gildenblat
Jens Pahnke
977
2
0
10 Mar 2025
Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
Mattéo Clémot
Julie Digne
Julien Tierny
995
3
0
27 Feb 2025
Navigating the Effect of Parametrization for Dimensionality Reduction
Navigating the Effect of Parametrization for Dimensionality ReductionNeural Information Processing Systems (NeurIPS), 2024
Haiyang Huang
Yingfan Wang
Cynthia Rudin
271
3
0
24 Nov 2024
Hyperboloid GPLVM for Discovering Continuous Hierarchies via
  Nonparametric Estimation
Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric EstimationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Koshi Watanabe
Keisuke Maeda
Takahiro Ogawa
Miki Haseyama
844
0
0
22 Oct 2024
Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer
  Learning
Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer LearningInternational Journal of Remote Sensing (IJRS), 2024
Isaac Ray
Alexei Skurikhin
410
0
0
05 Sep 2024
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample
  Extensions
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample ExtensionsIEEE Symposium on Large Data Analysis and Visualization (LDAV), 2024
Luca Reichmann
David Hägele
Daniel Weiskopf
914
1
0
07 Aug 2024
Outlier Detection in Large Radiological Datasets using UMAP
Outlier Detection in Large Radiological Datasets using UMAP
Mohammad Tariqul Islam
Jason W. Fleischer
384
2
0
31 Jul 2024
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
Shay Deutsch
Lionel Yelibi
Alex Tong Lin
Arjun Ravi Kannan
657
1
0
04 Jun 2024
CBMAP: Clustering-based manifold approximation and projection for
  dimensionality reduction
CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction
Berat Dogan
142
1
0
27 Apr 2024
Curvature Augmented Manifold Embedding and Learning
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
304
5
0
21 Mar 2024
Sampling-enabled scalable manifold learning unveils the discriminative cluster structure of high-dimensional data
Sampling-enabled scalable manifold learning unveils the discriminative cluster structure of high-dimensional data
D. Peng
Zhipeng Gui
Wenzhang Wei
Fa Li
Jie Gui
Huayi Wu
Jianya Gong
587
1
0
02 Jan 2024
k* Distribution: Evaluating the Latent Space of Deep Neural Networks
  using Local Neighborhood Analysis
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
294
4
0
07 Dec 2023
Calibrating dimension reduction hyperparameters in the presence of noise
Calibrating dimension reduction hyperparameters in the presence of noise
Justin Lin
Julia Fukuyama
348
3
0
05 Dec 2023
A ripple in time: a discontinuity in American history
A ripple in time: a discontinuity in American history
Alexander Kolpakov
Igor Rivin
AI4TS
324
0
0
02 Dec 2023
Efficiently Visualizing Large Graphs
Efficiently Visualizing Large Graphs
Xinyu Li
Yao Xiao
Yuchen Zhou
113
0
0
17 Oct 2023
Cluster Exploration using Informative Manifold Projections
Cluster Exploration using Informative Manifold ProjectionsEuropean Conference on Artificial Intelligence (ECAI), 2023
Stavros Gerolymatos
Xenophon Evangelopoulos
V. Gusev
John Y. Goulermas
121
0
0
26 Sep 2023
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Yi Zhang
SSL
147
0
0
15 Sep 2023
GroupEnc: encoder with group loss for global structure preservation
GroupEnc: encoder with group loss for global structure preservation
David Novak
S. V. Gassen
Yvan Saeys
DRL
94
1
0
06 Sep 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
371
6
0
20 Jun 2023
Collection Space Navigator: An Interactive Visualization Interface for
  Multidimensional Datasets
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional DatasetsInternational Symposiu on Visual Information Communication and Interaction (SVICI), 2023
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
137
9
0
11 May 2023
Force-Directed Graph Layouts Revisited: A New Force Based on the
  T-Distribution
Force-Directed Graph Layouts Revisited: A New Force Based on the T-DistributionIEEE Transactions on Visualization and Computer Graphics (TVCG), 2023
Fahai Zhong
Mingliang Xue
Jian Zhang
Fan Zhang
Rui Ban
Oliver Deussen
Yunhai Wang
210
11
0
05 Mar 2023
InDiReCT: Language-Guided Zero-Shot Deep Metric Learning for Images
InDiReCT: Language-Guided Zero-Shot Deep Metric Learning for ImagesIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2022
Konstantin Kobs
M. Steininger
Andreas Hotho
VLM
94
8
0
23 Nov 2022
Interpretable Dimensionality Reduction by Feature Preserving Manifold
  Approximation and Projection
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
194
3
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Unsupervised visualization of image datasets using contrastive learningInternational Conference on Learning Representations (ICLR), 2022
Jan Boehm
Philipp Berens
D. Kobak
SSL
417
22
0
18 Oct 2022
Layerwise Bregman Representation Learning with Applications to Knowledge
  Distillation
Layerwise Bregman Representation Learning with Applications to Knowledge Distillation
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
159
3
0
15 Sep 2022
From $t$-SNE to UMAP with contrastive learning
From ttt-SNE to UMAP with contrastive learningInternational Conference on Learning Representations (ICLR), 2022
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
346
29
0
03 Jun 2022
Hierarchical Nearest Neighbor Graph Embedding for Efficient
  Dimensionality Reduction
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality ReductionComputer Vision and Pattern Recognition (CVPR), 2022
M. Sarfraz
Marios Koulakis
C. Seibold
Rainer Stiefelhagen
217
24
0
24 Mar 2022
Learning from Randomly Initialized Neural Network Features
Learning from Randomly Initialized Neural Network Features
Ehsan Amid
Rohan Anil
W. Kotłowski
Manfred K. Warmuth
MLT
176
18
0
13 Feb 2022
Scalable semi-supervised dimensionality reduction with GPU-accelerated
  EmbedSOM
Scalable semi-supervised dimensionality reduction with GPU-accelerated EmbedSOM
Adam Šmelko
Sona Molnárová
Miroslav Kratochvíl
A. Koladiya
J. Musil
Martin Kruliš
J. Vondrášek
148
0
0
03 Jan 2022
TLDR: Twin Learning for Dimensionality Reduction
TLDR: Twin Learning for Dimensionality Reduction
Yannis Kalantidis
Carlos Lassance
Jon Almazán
Diane Larlus
SSL
229
12
0
18 Oct 2021
Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for
  Practical Measures
Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical MeasuresInternational Symposium on Computational Geometry (SoCG), 2021
Y. Bartal
Ora Nova Fandina
Kasper Green Larsen
76
0
0
14 Jul 2021
An Analytical Survey on Recent Trends in High Dimensional Data
  Visualization
An Analytical Survey on Recent Trends in High Dimensional Data Visualization
Alex B. Kiefer
Md. Khaledur Rahman
AI4TS
93
3
0
05 Jul 2021
WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise
  Labels
WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise LabelsGlobal Communications Conference (GLOBECOM), 2021
I. Karmanov
F. G. Zanjani
S. Merlin
I. Kadampot
Daniel Dijkman
165
20
0
31 May 2021
On UMAP's true loss function
On UMAP's true loss functionNeural Information Processing Systems (NeurIPS), 2021
Sebastian Damrich
Fred Hamprecht
213
44
0
26 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand ChallengesStatistics Survey (Stat. Surv.), 2021
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaMLAI4CELRM
412
862
0
20 Mar 2021
Where is your place, Visual Place Recognition?
Where is your place, Visual Place Recognition?International Joint Conference on Artificial Intelligence (IJCAI), 2021
Sourav Garg
Tobias Fischer
Michael Milford
343
134
0
11 Mar 2021
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
602
420
0
08 Dec 2020
Parametric UMAP embeddings for representation and semi-supervised
  learning
Parametric UMAP embeddings for representation and semi-supervised learningNeural Computation (Neural Comput.), 2020
Tim Sainburg
Leland McInnes
T. Gentner
360
297
0
27 Sep 2020
Bio-inspired Structure Identification in Language Embeddings
Bio-inspired Structure Identification in Language Embeddings
Hongwei Zhou
Zhou
Oskar Elek
P. Anand
A. Forbes
166
2
0
05 Sep 2020
Attraction-Repulsion Spectrum in Neighbor Embeddings
Attraction-Repulsion Spectrum in Neighbor EmbeddingsJournal of machine learning research (JMLR), 2020
Jan Niklas Böhm
Philipp Berens
D. Kobak
303
65
0
17 Jul 2020
12
Next