ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02551
  4. Cited By
Soft-Label Dataset Distillation and Text Dataset Distillation

Soft-Label Dataset Distillation and Text Dataset Distillation

6 October 2019
Ilia Sucholutsky
Matthias Schonlau
    DD
ArXivPDFHTML

Papers citing "Soft-Label Dataset Distillation and Text Dataset Distillation"

44 / 94 papers shown
Title
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Tao Feng
Jie Zhang
Peizheng Wang
Zhijie Wang
Shengyuan Pang
DD
53
0
0
29 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future
  Directions
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
62
26
0
03 May 2023
Generalizing Dataset Distillation via Deep Generative Prior
Generalizing Dataset Distillation via Deep Generative Prior
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
96
84
0
02 May 2023
Detecting the open-world objects with the help of the Brain
Detecting the open-world objects with the help of the Brain
Shuailei Ma
Yuefeng Wang
Ying-yu Wei
Peihao Chen
Zhixiang Ye
Jiaqi Fan
Enming Zhang
Thomas H. Li
VLM
ObjD
24
2
0
21 Mar 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
53
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
88
0
13 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo Zhao
Caiwen Ding
Heng Chang
Dongkuan Xu
DD
43
62
0
12 Dec 2022
Minimizing the Accumulated Trajectory Error to Improve Dataset
  Distillation
Minimizing the Accumulated Trajectory Error to Improve Dataset Distillation
Jiawei Du
Yiding Jiang
Vincent Y. F. Tan
Qiufeng Wang
Haizhou Li
DD
40
110
0
20 Nov 2022
Towards Robust Dataset Learning
Towards Robust Dataset Learning
Yihan Wu
Xinda Li
Florian Kerschbaum
Heng Huang
Hongyang R. Zhang
DD
OOD
49
10
0
19 Nov 2022
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
21
4
0
04 Nov 2022
On the Informativeness of Supervision Signals
On the Informativeness of Supervision Signals
Ilia Sucholutsky
Ruairidh M. Battleday
Katherine M. Collins
Raja Marjieh
Joshua C. Peterson
Pulkit Singh
Umang Bhatt
Nori Jacoby
Adrian Weller
Thomas L. Griffiths
27
12
0
02 Nov 2022
Dataset Distillation via Factorization
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
129
141
0
30 Oct 2022
Efficient Dataset Distillation Using Random Feature Approximation
Efficient Dataset Distillation Using Random Feature Approximation
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
DD
74
96
0
21 Oct 2022
Compressed Gastric Image Generation Based on Soft-Label Dataset
  Distillation for Medical Data Sharing
Compressed Gastric Image Generation Based on Soft-Label Dataset Distillation for Medical Data Sharing
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
32
40
0
29 Sep 2022
Dataset Distillation Using Parameter Pruning
Dataset Distillation Using Parameter Pruning
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
42
20
0
29 Sep 2022
Federated Learning via Decentralized Dataset Distillation in
  Resource-Constrained Edge Environments
Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
Rui Song
Dai Liu
Da Chen
Andreas Festag
Carsten Trinitis
Martin Schulz
Alois C. Knoll
DD
FedML
28
62
0
24 Aug 2022
Delving into Effective Gradient Matching for Dataset Condensation
Delving into Effective Gradient Matching for Dataset Condensation
Zixuan Jiang
Jiaqi Gu
Mingjie Liu
David Z. Pan
DD
20
41
0
30 Jul 2022
FedDM: Iterative Distribution Matching for Communication-Efficient
  Federated Learning
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
50
82
0
20 Jul 2022
PRANC: Pseudo RAndom Networks for Compacting deep models
PRANC: Pseudo RAndom Networks for Compacting deep models
Parsa Nooralinejad
Ali Abbasi
Soroush Abbasi Koohpayegani
Kossar Pourahmadi Meibodi
Rana Muhammad Shahroz Khan
Soheil Kolouri
Hamed Pirsiavash
DD
37
0
0
16 Jun 2022
Remember the Past: Distilling Datasets into Addressable Memories for
  Neural Networks
Remember the Past: Distilling Datasets into Addressable Memories for Neural Networks
Zhiwei Deng
Olga Russakovsky
FedML
DD
41
92
0
06 Jun 2022
Privacy for Free: How does Dataset Condensation Help Privacy?
Privacy for Free: How does Dataset Condensation Help Privacy?
Tian Dong
Bo Zhao
Lingjuan Lyu
DD
24
113
0
01 Jun 2022
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
401
158
0
30 May 2022
Dataset Pruning: Reducing Training Data by Examining Generalization
  Influence
Dataset Pruning: Reducing Training Data by Examining Generalization Influence
Shuo Yang
Zeke Xie
Hanyu Peng
Minjing Xu
Mingming Sun
P. Li
DD
155
106
0
19 May 2022
Synthesizing Informative Training Samples with GAN
Synthesizing Informative Training Samples with GAN
Bo Zhao
Hakan Bilen
DD
37
74
0
15 Apr 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedML
DD
78
363
0
22 Mar 2022
Learning to Generate Synthetic Training Data using Gradient Matching and
  Implicit Differentiation
Learning to Generate Synthetic Training Data using Gradient Matching and Implicit Differentiation
Dmitry Medvedev
A. Dýakonov
DD
6
9
0
16 Mar 2022
Can Humans Do Less-Than-One-Shot Learning?
Can Humans Do Less-Than-One-Shot Learning?
Maya Malaviya
Ilia Sucholutsky
Kerem Oktar
Thomas L. Griffiths
24
7
0
09 Feb 2022
Submodularity In Machine Learning and Artificial Intelligence
Submodularity In Machine Learning and Artificial Intelligence
J. Bilmes
8
53
0
31 Jan 2022
Dataset Condensation with Distribution Matching
Dataset Condensation with Distribution Matching
Bo Zhao
Hakan Bilen
DD
26
282
0
08 Oct 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
229
0
27 Jul 2021
Federated Learning Meets Natural Language Processing: A Survey
Federated Learning Meets Natural Language Processing: A Survey
Ming Liu
Stella Ho
Mengqi Wang
Longxiang Gao
Yuan Jin
Heng Zhang
FedML
25
67
0
27 Jul 2021
Bridge Networks: Relating Inputs through Vector-Symbolic Manipulations
Bridge Networks: Relating Inputs through Vector-Symbolic Manipulations
W. Olin-Ammentorp
M. Bazhenov
GNN
14
4
0
15 Jun 2021
Soft-Label Anonymous Gastric X-ray Image Distillation
Soft-Label Anonymous Gastric X-ray Image Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
37
51
0
07 Apr 2021
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo Zhao
Hakan Bilen
DD
205
288
0
16 Feb 2021
One Line To Rule Them All: Generating LO-Shot Soft-Label Prototypes
One Line To Rule Them All: Generating LO-Shot Soft-Label Prototypes
Ilia Sucholutsky
Nam-Hwui Kim
R. Browne
Matthias Schonlau
VLM
13
6
0
15 Feb 2021
Dataset Meta-Learning from Kernel Ridge-Regression
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
New Properties of the Data Distillation Method When Working With Tabular
  Data
New Properties of the Data Distillation Method When Working With Tabular Data
Dmitry Medvedev
A. Dýakonov
DD
16
9
0
19 Oct 2020
SecDD: Efficient and Secure Method for Remotely Training Neural Networks
SecDD: Efficient and Secure Method for Remotely Training Neural Networks
Ilia Sucholutsky
Matthias Schonlau
14
15
0
19 Sep 2020
'Less Than One'-Shot Learning: Learning N Classes From M<N Samples
'Less Than One'-Shot Learning: Learning N Classes From M<N Samples
Ilia Sucholutsky
Matthias Schonlau
VLM
13
42
0
17 Sep 2020
Distilled One-Shot Federated Learning
Distilled One-Shot Federated Learning
Yanlin Zhou
George Pu
Xiyao Ma
Xiaolin Li
D. Wu
FedML
DD
51
158
0
17 Sep 2020
Federated Learning via Synthetic Data
Federated Learning via Synthetic Data
Jack Goetz
Ambuj Tewari
FedML
DD
17
71
0
11 Aug 2020
Flexible Dataset Distillation: Learn Labels Instead of Images
Flexible Dataset Distillation: Learn Labels Instead of Images
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
DD
16
109
0
15 Jun 2020
Dataset Condensation with Gradient Matching
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
36
472
0
10 Jun 2020
Previous
12