Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06358
Cited By
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
14 October 2019
Christopher Frye
C. Rowat
Ilya Feige
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability"
41 / 41 papers shown
Title
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
43
0
0
05 May 2025
From Abstract to Actionable: Pairwise Shapley Values for Explainable AI
Jiaxin Xu
Hung Chau
Angela Burden
TDI
57
0
0
18 Feb 2025
AI Data Readiness Inspector (AIDRIN) for Quantitative Assessment of Data Readiness for AI
Kaveen Hiniduma
Suren Byna
J. L. Bez
Ravi Madduri
58
5
0
27 Jun 2024
Partial Information Decomposition for Data Interpretability and Feature Selection
Charles Westphal
Stephen Hailes
Mirco Musolesi
42
0
0
29 May 2024
REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values
Shubham Sharma
Sanghamitra Dutta
Emanuele Albini
Freddy Lecue
Daniele Magazzeni
Manuela Veloso
45
1
0
13 Mar 2024
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
FAtt
39
2
0
15 Feb 2024
Succinct Interaction-Aware Explanations
Sascha Xu
Joscha Cuppers
Jilles Vreeken
FAtt
29
0
0
08 Feb 2024
Information-Theoretic State Variable Selection for Reinforcement Learning
Charles Westphal
Stephen Hailes
Mirco Musolesi
26
3
0
21 Jan 2024
Theoretical Evaluation of Asymmetric Shapley Values for Root-Cause Analysis
Domokos M. Kelen
Mihaly Petreczky
Péter Kersch
András A. Benczúr
FAtt
44
3
0
15 Oct 2023
Towards Faithful Neural Network Intrinsic Interpretation with Shapley Additive Self-Attribution
Ying Sun
Hengshu Zhu
Huixia Xiong
TDI
FAtt
MILM
28
1
0
27 Sep 2023
Beyond Single-Feature Importance with ICECREAM
M.-J. Oesterle
Patrick Blobaum
Atalanti A. Mastakouri
Elke Kirschbaum
CML
45
1
0
19 Jul 2023
Shapley Sets: Feature Attribution via Recursive Function Decomposition
Torty Sivill
Peter A. Flach
FAtt
TDI
11
1
0
04 Jul 2023
PWSHAP: A Path-Wise Explanation Model for Targeted Variables
Lucile Ter-Minassian
Oscar Clivio
Karla Diaz-Ordaz
R. Evans
Chris Holmes
31
1
0
26 Jun 2023
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
58
11
0
24 May 2023
Shapley Chains: Extending Shapley Values to Classifier Chains
CE Ayad
Thomas Bonnier
Benjamin Bosch
Jesse Read
FAtt
TDI
20
2
0
30 Mar 2023
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
39
15
0
27 Oct 2022
Explanation Shift: Detecting distribution shifts on tabular data via the explanation space
Carlos Mougan
Klaus Broelemann
Gjergji Kasneci
T. Tiropanis
Steffen Staab
FAtt
34
7
0
22 Oct 2022
Statistical Aspects of SHAP: Functional ANOVA for Model Interpretation
Andrew Herren
P. R. Hahn
FAtt
29
9
0
21 Aug 2022
Unifying local and global model explanations by functional decomposition of low dimensional structures
M. Hiabu
Josephine T. Meyer
Marvin N. Wright
FAtt
37
20
0
12 Aug 2022
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
32
205
0
11 Feb 2022
Explainability in Music Recommender Systems
Darius Afchar
Alessandro B. Melchiorre
Markus Schedl
Romain Hennequin
Elena V. Epure
Manuel Moussallam
36
48
0
25 Jan 2022
AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the Machine-Learning Black Box
David Dandolo
Chiara Masiero
Mattia Carletti
Davide Dalle Pezze
Gian Antonio Susto
FAtt
LRM
24
23
0
23 Dec 2021
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
32
17
0
26 Nov 2021
Causal versus Marginal Shapley Values for Robotic Lever Manipulation Controlled using Deep Reinforcement Learning
Sindre Benjamin Remman
Inga Strümke
A. Lekkas
CML
19
7
0
04 Nov 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
Explaining Algorithmic Fairness Through Fairness-Aware Causal Path Decomposition
Weishen Pan
Sen Cui
Jiang Bian
Changshui Zhang
Fei Wang
CML
FaML
27
33
0
11 Aug 2021
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
28
39
0
24 Jun 2021
Rational Shapley Values
David S. Watson
23
20
0
18 Jun 2021
Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning
Jiahui Li
Kun Kuang
Baoxiang Wang
Furui Liu
Long Chen
Fei Wu
Jun Xiao
OffRL
27
60
0
01 Jun 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
38
32
0
25 May 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
30
105
0
22 Mar 2021
Shapley values for feature selection: The good, the bad, and the axioms
D. Fryer
Inga Strümke
Hien Nguyen
FAtt
TDI
6
190
0
22 Feb 2021
The Shapley Value of Classifiers in Ensemble Games
Benedek Rozemberczki
Rik Sarkar
FAtt
FedML
TDI
61
33
0
06 Jan 2021
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
53
243
0
21 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
33
0
06 Nov 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
19
151
0
03 Nov 2020
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
28
88
0
27 Oct 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
35
73
0
24 Jun 2020
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
38
606
0
25 Mar 2019
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1