ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08527
  4. Cited By
Masked Gradient-Based Causal Structure Learning

Masked Gradient-Based Causal Structure Learning

18 October 2019
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
    CML
ArXivPDFHTML

Papers citing "Masked Gradient-Based Causal Structure Learning"

15 / 15 papers shown
Title
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Yue Cheng
Jiajun Zhang
Weiwei Xing
Xiaoyu Guo
Yue Cheng
Witold Pedrycz
CML
27
0
0
25 Oct 2024
Towards Generalizable Reinforcement Learning via Causality-Guided Self-Adaptive Representations
Yupei Yang
Biwei Huang
Fan Feng
Xinyue Wang
Shikui Tu
Lei Xu
CML
OOD
TTA
25
1
0
30 Jul 2024
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Hangtong Xu
Yuanbo Xu
Yongjian Yang
Fuzhen Zhuang
CML
58
0
0
02 Nov 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
6
24
0
27 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
28
11
0
29 Jan 2023
Causal Structural Hypothesis Testing and Data Generation Models
Causal Structural Hypothesis Testing and Data Generation Models
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Sunay Bhat
Gregory Pottie
CML
19
1
0
20 Oct 2022
De-Biasing Generative Models using Counterfactual Methods
De-Biasing Generative Models using Counterfactual Methods
Sunay Bhat
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Gregory Pottie
CML
8
7
0
04 Jul 2022
Large-Scale Differentiable Causal Discovery of Factor Graphs
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CML
AI4CE
24
40
0
15 Jun 2022
Differentiable Causal Discovery Under Latent Interventions
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
17
22
0
04 Mar 2022
gCastle: A Python Toolbox for Causal Discovery
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
6
58
0
30 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
21
37
0
18 Oct 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
6
63
0
14 May 2021
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
24
43
0
18 Apr 2020
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
93
254
0
29 Sep 2019
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background Knowledge
Christopher Meek
CML
196
628
0
20 Feb 2013
1