ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09652
  4. Cited By
Kernelized Wasserstein Natural Gradient
v1v2v3v4 (latest)

Kernelized Wasserstein Natural Gradient

International Conference on Learning Representations (ICLR), 2019
21 October 2019
Michael Arbel
Arthur Gretton
Wuchen Li
Guido Montúfar
ArXiv (abs)PDFHTML

Papers citing "Kernelized Wasserstein Natural Gradient"

17 / 17 papers shown
Regularized Gauss-Newton for Optimizing Overparameterized Neural
  Networks
Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks
Adeyemi Damilare Adeoye
Philipp Christian Petersen
Alberto Bemporad
254
2
0
23 Apr 2024
Rethinking Gauss-Newton for learning over-parameterized models
Rethinking Gauss-Newton for learning over-parameterized modelsNeural Information Processing Systems (NeurIPS), 2023
Michael Arbel
Romain Menegaux
Pierre Wolinski
AI4CE
452
8
0
06 Feb 2023
Dynamic Flows on Curved Space Generated by Labeled Data
Dynamic Flows on Curved Space Generated by Labeled DataInternational Joint Conference on Artificial Intelligence (IJCAI), 2023
Xinru Hua
Truyen V. Nguyen
Tam Le
Jose H. Blanchet
Viet Anh Nguyen
329
9
0
31 Jan 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with
  Riesz Kernels
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz KernelsInternational Conference on Machine Learning (ICML), 2023
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
397
15
0
27 Jan 2023
Geometry and convergence of natural policy gradient methods
Geometry and convergence of natural policy gradient methodsInformation Geometry (IG), 2022
Johannes Muller
Guido Montúfar
278
16
0
03 Nov 2022
Provably convergent quasistatic dynamics for mean-field two-player
  zero-sum games
Provably convergent quasistatic dynamics for mean-field two-player zero-sum gamesInternational Conference on Learning Representations (ICLR), 2022
Chao Ma
Lexing Ying
MLT
166
12
0
15 Feb 2022
Efficient Natural Gradient Descent Methods for Large-Scale PDE-Based
  Optimization Problems
Efficient Natural Gradient Descent Methods for Large-Scale PDE-Based Optimization ProblemsSIAM Journal on Scientific Computing (SISC), 2022
L. Nurbekyan
Wanzhou Lei
Yunbo Yang
233
14
0
13 Feb 2022
Depth Without the Magic: Inductive Bias of Natural Gradient Descent
Depth Without the Magic: Inductive Bias of Natural Gradient Descent
A. Kerekes
Anna Mészáros
Ferenc Huszár
ODL
199
4
0
22 Nov 2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Tactical Optimism and Pessimism for Deep Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2021
Theodore H. Moskovitz
Jack Parker-Holder
Aldo Pacchiano
Michael Arbel
Sai Li
347
70
0
07 Feb 2021
AsymptoticNG: A regularized natural gradient optimization algorithm with
  look-ahead strategy
AsymptoticNG: A regularized natural gradient optimization algorithm with look-ahead strategy
Zedong Tang
Fenlong Jiang
Junke Song
Maoguo Gong
Hao Li
F. Yu
Zidong Wang
Min Wang
ODL
144
1
0
24 Dec 2020
Sinkhorn Natural Gradient for Generative Models
Sinkhorn Natural Gradient for Generative Models
Zebang Shen
Zhenfu Wang
Alejandro Ribeiro
Hamed Hassani
GANDiffM
110
13
0
09 Nov 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient
  Flow
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
209
26
0
04 Nov 2020
Efficient Wasserstein Natural Gradients for Reinforcement Learning
Efficient Wasserstein Natural Gradients for Reinforcement Learning
Theodore H. Moskovitz
Michael Arbel
Ferenc Huszár
Arthur Gretton
384
21
0
12 Oct 2020
Generalized Energy Based Models
Generalized Energy Based ModelsInternational Conference on Learning Representations (ICLR), 2020
Michael Arbel
Liang Zhou
Arthur Gretton
DRL
500
93
0
10 Mar 2020
DDPNOpt: Differential Dynamic Programming Neural Optimizer
DDPNOpt: Differential Dynamic Programming Neural OptimizerInternational Conference on Learning Representations (ICLR), 2020
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
284
7
0
20 Feb 2020
Information Newton's flow: second-order optimization method in
  probability space
Information Newton's flow: second-order optimization method in probability space
Yifei Wang
Wuchen Li
373
34
0
13 Jan 2020
Wasserstein information matrix
Wasserstein information matrixInformation Geometry (IG), 2019
Wuchen Li
Jiaxi Zhao
153
35
0
24 Oct 2019
1
Page 1 of 1