Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1910.10045
Cited By
v1
v2 (latest)
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Information Fusion (Inf. Fusion), 2019
22 October 2019
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
A. Barbado
S. García
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI"
50 / 1,481 papers shown
Title
Deep Learning for Road Traffic Forecasting: Does it Make a Difference?
Eric L. Manibardo
I. Laña
Javier Del Ser
AI4TS
190
85
0
02 Dec 2020
Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training
Andrei Margeloiu
Nikola Simidjievski
M. Jamnik
Adrian Weller
GAN
AAML
MedIm
FAtt
100
20
0
02 Dec 2020
Reviewing the Need for Explainable Artificial Intelligence (xAI)
Hawaii International Conference on System Sciences (HICSS), 2020
Julie Gerlings
Arisa Shollo
Ioanna D. Constantiou
316
79
0
02 Dec 2020
Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment
Alfonso Ortega
Julian Fierrez
Aythami Morales
Zilong Wang
Tony Ribeiro
197
14
0
01 Dec 2020
Explaining Deep Learning Models for Structured Data using Layer-Wise Relevance Propagation
hsan Ullah
André Ríos
Vaibhav Gala
Susan Mckeever
FAtt
158
10
0
26 Nov 2020
Achievements and Challenges in Explaining Deep Learning based Computer-Aided Diagnosis Systems
Adriano Lucieri
Muhammad Naseer Bajwa
Andreas Dengel
Sheraz Ahmed
256
13
0
26 Nov 2020
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Computer Vision and Pattern Recognition (CVPR), 2020
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
159
89
0
25 Nov 2020
PSD2 Explainable AI Model for Credit Scoring
N. Torrent
Giorgio Visani
Engineering
150
1
0
20 Nov 2020
Qualitative Investigation in Explainable Artificial Intelligence: A Bit More Insight from Social Science
Adam J. Johs
Denise E. Agosto
Rosina O. Weber
172
7
0
13 Nov 2020
Unsupervised Explanation Generation for Machine Reading Comprehension
Yiming Cui
Ting Liu
Shijin Wang
Guoping Hu
LRM
93
3
0
13 Nov 2020
Interpretable collaborative data analysis on distributed data
A. Imakura
Hiroaki Inaba
Yukihiko Okada
Tetsuya Sakurai
FedML
83
27
0
09 Nov 2020
Unwrapping The Black Box of Deep ReLU Networks: Interpretability, Diagnostics, and Simplification
Agus Sudjianto
William Knauth
Rahul Singh
Zebin Yang
Aijun Zhang
FAtt
200
50
0
08 Nov 2020
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition
Meike Nauta
Annemarie Jutte
Jesper C. Provoost
C. Seifert
FAtt
276
74
0
05 Nov 2020
Towards Personalized Explanation of Robot Path Planning via User Feedback
Kayla Boggess
Shenghui Chen
Lu Feng
112
4
0
01 Nov 2020
Interpretable Machine Learning Models for Predicting and Explaining Vehicle Fuel Consumption Anomalies
Engineering applications of artificial intelligence (EAAI), 2020
A. Barbado
Óscar Corcho
251
15
0
28 Oct 2020
Now You See Me (CME): Concept-based Model Extraction
International Conference on Information and Knowledge Management (CIKM), 2020
Dmitry Kazhdan
B. Dimanov
M. Jamnik
Pietro Lio
Adrian Weller
85
81
0
25 Oct 2020
Abduction and Argumentation for Explainable Machine Learning: A Position Survey
A. Kakas
Loizos Michael
63
12
0
24 Oct 2020
Towards human-agent knowledge fusion (HAKF) in support of distributed coalition teams
Dave Braines
Federico Cerutti
Marc Roig Vilamala
Mani B. Srivastava
Alun D. Preece
G. Pearson
100
4
0
23 Oct 2020
Model Interpretability through the Lens of Computational Complexity
Neural Information Processing Systems (NeurIPS), 2020
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
323
108
0
23 Oct 2020
Unsupervised Expressive Rules Provide Explainability and Assist Human Experts Grasping New Domains
Findings (Findings), 2020
Eyal Shnarch
Leshem Choshen
Guy Moshkowich
Noam Slonim
R. Aharonov
270
13
0
19 Oct 2020
A Framework to Learn with Interpretation
Neural Information Processing Systems (NeurIPS), 2020
Jayneel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
AI4CE
FAtt
286
32
0
19 Oct 2020
Squashing activation functions in benchmark tests: towards eXplainable Artificial Intelligence using continuous-valued logic
Knowledge-Based Systems (KBS), 2020
Daniel Zeltner
Benedikt Schmid
G. Csiszár
O. Csiszár
AAML
55
16
0
17 Oct 2020
Physics-informed GANs for Coastal Flood Visualization
Björn Lütjens
B. Leshchinskiy
C. Requena-Mesa
F. Chishtie
Natalia Díaz Rodríguez
...
A. Piña
Dava Newman
Alexander Lavin
Y. Gal
Chedy Raïssi
AI4CE
88
16
0
16 Oct 2020
Do's and Don'ts for Human and Digital Worker Integration
Vinod Muthusamy
Merve Unuvar
Hagen Volzer
Justin D. Weisz
112
3
0
15 Oct 2020
Interpretable Machine Learning with an Ensemble of Gradient Boosting Machines
A. Konstantinov
Lev V. Utkin
FedML
AI4CE
162
184
0
14 Oct 2020
Adaptive Deep Forest for Online Learning from Drifting Data Streams
Lukasz Korycki
Bartosz Krawczyk
74
5
0
14 Oct 2020
Integrating Intrinsic and Extrinsic Explainability: The Relevance of Understanding Neural Networks for Human-Robot Interaction
Tom Weber
S. Wermter
80
4
0
09 Oct 2020
Sickle-cell disease diagnosis support selecting the most appropriate machinelearning method: Towards a general and interpretable approach for cellmorphology analysis from microscopy images
N. Petrovic
Gabriel Moyà-Alcover
Antoni Jaume-i-Capó
Manuel González Hidalgo
99
41
0
09 Oct 2020
Association rules over time
Iztok Fister
Iztok Fister
AI4TS
91
5
0
08 Oct 2020
Simplifying the explanation of deep neural networks with sufficient and necessary feature-sets: case of text classification
Florentin Flambeau Jiechieu Kameni
Norbert Tsopzé
XAI
FAtt
MedIm
89
1
0
08 Oct 2020
Explaining Deep Neural Networks
Oana-Maria Camburu
XAI
FAtt
288
30
0
04 Oct 2020
Explanation Ontology: A Model of Explanations for User-Centered AI
International Workshop on the Semantic Web (SW), 2020
Shruthi Chari
Oshani Seneviratne
Daniel Gruen
Morgan Foreman
Amar K. Das
D. McGuinness
XAI
138
64
0
04 Oct 2020
Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation
AAAI Conference on Artificial Intelligence (AAAI), 2020
S. Sattarzadeh
M. Sudhakar
Anthony Lem
Shervin Mehryar
K. N. Plataniotis
Jongseong Jang
Hyunwoo J. Kim
Yeonjeong Jeong
Sang-Min Lee
Kyunghoon Bae
FAtt
XAI
135
35
0
01 Oct 2020
Explainable Deep Reinforcement Learning for UAV Autonomous Navigation
Lei He
Nabil Aouf
Bifeng Song
134
13
0
30 Sep 2020
A Human-in-the-Loop Approach based on Explainability to Improve NTL Detection
Bernat Coma-Puig
J. Carmona
120
2
0
28 Sep 2020
A light-weight method to foster the (Grad)CAM interpretability and explainability of classification networks
Automation, Control, and Information Technology (ACIT), 2020
Alfred Schöttl
FAtt
54
13
0
26 Sep 2020
A Diagnostic Study of Explainability Techniques for Text Classification
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020
Pepa Atanasova
J. Simonsen
Christina Lioma
Isabelle Augenstein
XAI
FAtt
249
257
0
25 Sep 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Knowledge Discovery and Data Mining (KDD), 2020
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
187
105
0
22 Sep 2020
CURIE: A Cellular Automaton for Concept Drift Detection
Data mining and knowledge discovery (DMKD), 2020
J. Lobo
Javier Del Ser
E. Osaba
Nikolaos Perrakis
Francisco Herrera
AI4TS
98
7
0
21 Sep 2020
Principles and Practice of Explainable Machine Learning
Frontiers in Big Data (Front. Big Data), 2020
Vaishak Belle
I. Papantonis
FaML
206
521
0
18 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
788
88
0
17 Sep 2020
MeLIME: Meaningful Local Explanation for Machine Learning Models
T. Botari
Frederik Hvilshoj
Rafael Izbicki
A. Carvalho
AAML
FAtt
183
19
0
12 Sep 2020
Towards a More Reliable Interpretation of Machine Learning Outputs for Safety-Critical Systems using Feature Importance Fusion
Applied Sciences (Appl. Sci.), 2020
D. Rengasamy
Benjamin Rothwell
Grazziela Figueredo
FaML
FAtt
84
46
0
11 Sep 2020
Transparency and granularity in the SP Theory of Intelligence and its realisation in the SP Computer Model
Studies in Computational Intelligence (SCI), 2020
J. Wolff
197
5
0
07 Sep 2020
Quantifying Explainability of Saliency Methods in Deep Neural Networks with a Synthetic Dataset
IEEE Transactions on Artificial Intelligence (IEEE TAI), 2020
Erico Tjoa
Cuntai Guan
XAI
FAtt
317
33
0
07 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
185
58
0
03 Sep 2020
Micro-entries: Encouraging Deeper Evaluation of Mental Models Over Time for Interactive Data Systems
Jeremy E. Block
Eric D. Ragan
116
8
0
02 Sep 2020
Face Image Quality Assessment: A Literature Survey
ACM Computing Surveys (ACM CSUR), 2020
Torsten Schlett
Christian Rathgeb
O. Henniger
Javier Galbally
Julian Fierrez
Christoph Busch
CVBM
284
152
0
02 Sep 2020
Machine Reasoning Explainability
K. Čyras
R. Badrinath
S. Mohalik
A. Mujumdar
Alexandros Nikou
Alessandro Previti
Vaishnavi Sundararajan
Aneta Vulgarakis Feljan
LRM
267
13
0
01 Sep 2020
Algorithmic Transparency with Strategic Users
Qiaochu Wang
Yan-ping Huang
Stefanus Jasin
P. Singh
FaML
FedML
95
28
0
21 Aug 2020
Previous
1
2
3
...
27
28
29
30
Next