ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10045
  4. Cited By
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
v1v2 (latest)

Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

Information Fusion (Inf. Fusion), 2019
22 October 2019
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
A. Barbado
S. García
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
    XAI
ArXiv (abs)PDFHTML

Papers citing "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI"

34 / 1,484 papers shown
Title
Review of Artificial Intelligence Techniques in Imaging Data
  Acquisition, Segmentation and Diagnosis for COVID-19
Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for COVID-19IEEE Reviews in Biomedical Engineering (RBME), 2020
F. Shi
Jun Wang
Jun Shi
Zi-xiang Wu
Qian Wang
Zhenyu Tang
Kelei He
Yinghuan Shi
Dinggang Shen
240
1,092
0
06 Apr 2020
R3: A Reading Comprehension Benchmark Requiring Reasoning Processes
R3: A Reading Comprehension Benchmark Requiring Reasoning Processes
Ran Wang
Kun Tao
Dingjie Song
Zhilong Zhang
Xiao Ma
Xiáo Su
Xinyu Dai
136
3
0
02 Apr 2020
Plausible Counterfactuals: Auditing Deep Learning Classifiers with
  Realistic Adversarial Examples
Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial ExamplesIEEE International Joint Conference on Neural Network (IJCNN), 2020
Alejandro Barredo Arrieta
Javier Del Ser
AAML
189
27
0
25 Mar 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Learn to Forget: Machine Unlearning via Neuron MaskingIEEE Transactions on Dependable and Secure Computing (TDSC), 2020
Yang Liu
Zhuo Ma
Ximeng Liu
Jian Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
183
80
0
24 Mar 2020
SurvLIME: A method for explaining machine learning survival models
SurvLIME: A method for explaining machine learning survival modelsKnowledge-Based Systems (KBS), 2020
M. Kovalev
Lev V. Utkin
E. Kasimov
410
101
0
18 Mar 2020
Pre-trained Models for Natural Language Processing: A Survey
Pre-trained Models for Natural Language Processing: A SurveyScience China Technological Sciences (Sci China Technol Sci), 2020
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MAVLM
965
1,609
0
18 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
347
87
0
17 Mar 2020
Towards Transparent Robotic Planning via Contrastive Explanations
Towards Transparent Robotic Planning via Contrastive ExplanationsIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2020
Shenghui Chen
Kayla Boggess
Lu Feng
111
11
0
16 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAIInformation Fusion (Inf. Fusion), 2020
L. Arras
Ahmed Osman
Wojciech Samek
XAIAAML
234
182
0
16 Mar 2020
Universal Function Approximation on Graphs
Universal Function Approximation on GraphsNeural Information Processing Systems (NeurIPS), 2020
Rickard Brüel-Gabrielsson
155
6
0
14 Mar 2020
Explainable Agents Through Social Cues: A Review
Explainable Agents Through Social Cues: A Review
Sebastian Wallkötter
Silvia Tulli
Ginevra Castellano
Ana Paiva
Mohamed Chetouani
173
13
0
11 Mar 2020
Vector symbolic architectures for context-free grammars
Vector symbolic architectures for context-free grammarsCognitive Computation (Cogn Comput), 2020
P. B. Graben
Markus Huber
Werner Meyer
Ronald Römer
M. Wolff
216
9
0
11 Mar 2020
Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
  Assurance Methodology
Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance MethodologyMachine Learning and Knowledge Extraction (MLKE), 2020
Stefan Studer
T. Bui
C. Drescher
A. Hanuschkin
Ludwig Winkler
S. Peters
Klaus-Robert Muller
253
215
0
11 Mar 2020
Towards Interpretable ANNs: An Exact Transformation to Multi-Class
  Multivariate Decision Trees
Towards Interpretable ANNs: An Exact Transformation to Multi-Class Multivariate Decision Trees
Duy T. Nguyen
Kathryn E. Kasmarik
H. Abbass
256
9
0
10 Mar 2020
Information cartography in association rule mining
Information cartography in association rule miningIEEE Transactions on Emerging Topics in Computational Intelligence (IEEE TETCI), 2020
Iztok Fister
Iztok Fister
108
14
0
29 Feb 2020
AI safety: state of the field through quantitative lens
AI safety: state of the field through quantitative lensInternational Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2020
Mislav Juric
A. Sandic
Mario Brčič
230
27
0
12 Feb 2020
From Data to Actions in Intelligent Transportation Systems: a
  Prescription of Functional Requirements for Model Actionability
From Data to Actions in Intelligent Transportation Systems: a Prescription of Functional Requirements for Model ActionabilityItalian National Conference on Sensors (INS), 2020
I. Laña
J. S. Medina
E. Vlahogianni
Javier Del Ser
243
59
0
06 Feb 2020
LUNAR: Cellular Automata for Drifting Data Streams
LUNAR: Cellular Automata for Drifting Data StreamsInformation Sciences (Inf. Sci.), 2020
J. Lobo
Javier Del Ser
Francisco Herrera
AI4TS
117
6
0
06 Feb 2020
MNIST-NET10: A heterogeneous deep networks fusion based on the degree of
  certainty to reach 0.1 error rate. Ensembles overview and proposal
MNIST-NET10: A heterogeneous deep networks fusion based on the degree of certainty to reach 0.1 error rate. Ensembles overview and proposalInformation Fusion (Inf. Fusion), 2020
Siham Tabik
R. F. Alvear-Sandoval
María M. Ruiz
J. Sancho-Gómez
A. Figueiras-Vidal
Francisco Herrera
210
34
0
30 Jan 2020
An interpretable semi-supervised classifier using two different
  strategies for amended self-labeling
An interpretable semi-supervised classifier using two different strategies for amended self-labeling
Isel Grau
Dipankar Sengupta
M. Lorenzo
A. Nowé
SSL
186
4
0
26 Jan 2020
Explainable Artificial Intelligence and Machine Learning: A reality
  rooted perspective
Explainable Artificial Intelligence and Machine Learning: A reality rooted perspective
F. Emmert-Streib
O. Yli-Harja
M. Dehmer
87
89
0
26 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A SurveyIEEE Transactions on Radiation and Plasma Medical Sciences (TRPMS), 2020
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAMLAI4CE
393
371
0
08 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User ExperiencesInternational Conference on Human Factors in Computing Systems (CHI), 2020
Q. V. Liao
D. Gruen
Sarah Miller
484
808
0
08 Jan 2020
Analysing Deep Reinforcement Learning Agents Trained with Domain
  Randomisation
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
Tianhong Dai
Kai Arulkumaran
Tamara Gerbert
Samyakh Tukra
Feryal M. P. Behbahani
Anil Anthony Bharath
218
31
0
18 Dec 2019
Understanding complex predictive models with Ghost Variables
Understanding complex predictive models with Ghost VariablesTest (Madrid) (TM), 2019
Pedro Delicado
D. Peña
FAtt
110
6
0
13 Dec 2019
Rule Extraction in Unsupervised Anomaly Detection for Model
  Explainability: Application to OneClass SVM
Rule Extraction in Unsupervised Anomaly Detection for Model Explainability: Application to OneClass SVMExpert systems with applications (ESWA), 2019
A. Barbado
Óscar Corcho
Richard Benjamins
147
64
0
21 Nov 2019
Explainable Artificial Intelligence (XAI) for 6G: Improving Trust
  between Human and Machine
Explainable Artificial Intelligence (XAI) for 6G: Improving Trust between Human and Machine
Weisi Guo
176
42
0
11 Nov 2019
Learning Fair Rule Lists
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
188
11
0
09 Sep 2019
Satellite-Net: Automatic Extraction of Land Cover Indicators from
  Satellite Imagery by Deep Learning
Satellite-Net: Automatic Extraction of Land Cover Indicators from Satellite Imagery by Deep LearningStatistical Journal of the IAOS (JSI), 2019
Eleonora Bernasconi
Francesco Pugliese
Diego Zardetto
M. Scannapieco
65
4
0
22 Jul 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical
  XAI
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAIIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2019
Erico Tjoa
Cuntai Guan
XAI
602
1,746
0
17 Jul 2019
A Multi-Objective Anytime Rule Mining System to Ease Iterative Feedback
  from Domain Experts
A Multi-Objective Anytime Rule Mining System to Ease Iterative Feedback from Domain Experts
T. Baum
Steffen Herbold
K. Schneider
51
4
0
23 Dec 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of
  Explainable AI Systems
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
388
103
0
28 Nov 2018
On a Sparse Shortcut Topology of Artificial Neural Networks
On a Sparse Shortcut Topology of Artificial Neural NetworksIEEE Transactions on Artificial Intelligence (IEEE TAI), 2018
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
303
24
0
22 Nov 2018
XAI Beyond Classification: Interpretable Neural Clustering
XAI Beyond Classification: Interpretable Neural Clustering
Xi Peng
Yunfan Li
Ivor W. Tsang
Erik Cambria
Jiancheng Lv
Qiufeng Wang
166
83
0
22 Aug 2018
Previous
123...282930