ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12795
  4. Cited By
Learning Data Manipulation for Augmentation and Weighting

Learning Data Manipulation for Augmentation and Weighting

28 October 2019
Zhiting Hu
Bowen Tan
Ruslan Salakhutdinov
Tom Michael Mitchell
Eric P. Xing
ArXivPDFHTML

Papers citing "Learning Data Manipulation for Augmentation and Weighting"

19 / 19 papers shown
Title
Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification
Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification
Hsun-Yu Kuo
Yin-Hsiang Liao
Yu-Chieh Chao
Wei-Yun Ma
Pu-Jen Cheng
SyDa
45
2
0
28 Oct 2024
Reducing and Exploiting Data Augmentation Noise through Meta Reweighting
  Contrastive Learning for Text Classification
Reducing and Exploiting Data Augmentation Noise through Meta Reweighting Contrastive Learning for Text Classification
Guanyi Mou
Yichuan Li
Kyumin Lee
26
3
0
26 Sep 2024
AutoAugment Is What You Need: Enhancing Rule-based Augmentation Methods
  in Low-resource Regimes
AutoAugment Is What You Need: Enhancing Rule-based Augmentation Methods in Low-resource Regimes
Juhwan Choi
Kyohoon Jin
Junho Lee
Sangmin Song
Youngbin Kim
22
1
0
08 Feb 2024
Fine-tune Language Models to Approximate Unbiased In-context Learning
Fine-tune Language Models to Approximate Unbiased In-context Learning
Timothy Chu
Zhao-quan Song
Chiwun Yang
22
15
0
05 Oct 2023
How to choose "Good" Samples for Text Data Augmentation
How to choose "Good" Samples for Text Data Augmentation
Xiaotian Lin
Nankai Lin
Yingwen Fu
Ziyu Yang
Shengyi Jiang
36
2
0
02 Feb 2023
Class-Level Logit Perturbation
Class-Level Logit Perturbation
Mengyang Li
Fengguang Su
O. Wu
Tianjin University
AAML
29
3
0
13 Sep 2022
Learning to Re-weight Examples with Optimal Transport for Imbalanced
  Classification
Learning to Re-weight Examples with Optimal Transport for Imbalanced Classification
D. Guo
Zhuo Li
Meixi Zheng
He Zhao
Mingyuan Zhou
H. Zha
32
24
0
05 Aug 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
84
35
0
24 Jul 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
20
39
0
14 Jun 2022
Poisoning Attacks and Defenses on Artificial Intelligence: A Survey
Poisoning Attacks and Defenses on Artificial Intelligence: A Survey
M. A. Ramírez
Song-Kyoo Kim
H. A. Hamadi
Ernesto Damiani
Young-Ji Byon
Tae-Yeon Kim
C. Cho
C. Yeun
AAML
14
37
0
21 Feb 2022
Generalized Data Weighting via Class-level Gradient Manipulation
Generalized Data Weighting via Class-level Gradient Manipulation
Can Chen
Shuhao Zheng
Xi Chen
Erqun Dong
Xue Liu
Hao Liu
Dejing Dou
27
24
0
29 Oct 2021
Data Augmentation Approaches in Natural Language Processing: A Survey
Data Augmentation Approaches in Natural Language Processing: A Survey
Bohan Li
Yutai Hou
Wanxiang Che
124
270
0
05 Oct 2021
Text AutoAugment: Learning Compositional Augmentation Policy for Text
  Classification
Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification
Shuhuai Ren
Jinchao Zhang
Lei Li
Xu Sun
Jie Zhou
33
31
0
01 Sep 2021
AEDA: An Easier Data Augmentation Technique for Text Classification
AEDA: An Easier Data Augmentation Technique for Text Classification
Akbar Karimi
L. Rossi
Andrea Prati
26
151
0
30 Aug 2021
A Survey on Data Augmentation for Text Classification
A Survey on Data Augmentation for Text Classification
Markus Bayer
M. Kaufhold
Christian A. Reuter
28
334
0
07 Jul 2021
An Empirical Survey of Data Augmentation for Limited Data Learning in
  NLP
An Empirical Survey of Data Augmentation for Limited Data Learning in NLP
Jiaao Chen
Derek Tam
Colin Raffel
Mohit Bansal
Diyi Yang
26
172
0
14 Jun 2021
A Survey of Data Augmentation Approaches for NLP
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
35
799
0
07 May 2021
Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation
Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation
Lingyun Feng
Minghui Qiu
Yaliang Li
Haitao Zheng
Ying Shen
38
10
0
20 Jan 2021
Good-Enough Compositional Data Augmentation
Good-Enough Compositional Data Augmentation
Jacob Andreas
17
230
0
21 Apr 2019
1