ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13398
  4. Cited By
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
v1v2v3 (latest)

Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures

29 October 2019
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
ArXiv (abs)PDFHTML

Papers citing "Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures"

20 / 20 papers shown
Title
Variational Formulation of the Particle Flow Particle Filter
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
71
0
0
06 May 2025
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
151
0
0
03 Oct 2024
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
72
1
0
20 Sep 2024
Doubly Adaptive Importance Sampling
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
59
0
0
29 Apr 2024
Can We Remove the Square-Root in Adaptive Gradient Methods? A
  Second-Order Perspective
Can We Remove the Square-Root in Adaptive Gradient Methods? A Second-Order Perspective
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard Turner
Alireza Makhzani
ODL
161
13
0
05 Feb 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U
  Sampler and Stochastic Bridge Sampling
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
51
0
0
01 Jan 2024
Detecting Toxic Flow
Detecting Toxic Flow
Álvaro Cartea
Gerardo Duran-Martin
Leandro Sánchez-Betancourt
59
8
0
10 Dec 2023
GLIME: General, Stable and Local LIME Explanation
GLIME: General, Stable and Local LIME Explanation
Zeren Tan
Yang Tian
Jian Li
FAttLRM
83
20
0
27 Nov 2023
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
125
4
0
01 Nov 2023
The Score-Difference Flow for Implicit Generative Modeling
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
70
2
0
25 Apr 2023
The Lie-Group Bayesian Learning Rule
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
52
3
0
08 Mar 2023
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
126
17
0
23 Sep 2022
Variational inference via Wasserstein gradient flows
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDLDRL
101
77
0
31 May 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
98
16
0
02 Nov 2021
Analytic natural gradient updates for Cholesky factor in Gaussian
  variational approximation
Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation
Linda S. L. Tan
108
13
0
01 Sep 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
165
83
0
09 Jul 2021
Stein Latent Optimization for Generative Adversarial Networks
Stein Latent Optimization for Generative Adversarial Networks
Uiwon Hwang
Heeseung Kim
Dahuin Jung
Hyemi Jang
Hyungyu Lee
Sungroh Yoon
GAN
119
2
0
09 Jun 2021
Tractable structured natural gradient descent using local
  parameterizations
Tractable structured natural gradient descent using local parameterizations
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
146
30
0
15 Feb 2021
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
181
36
0
24 Feb 2020
Fast and Simple Natural-Gradient Variational Inference with Mixture of
  Exponential-family Approximations
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
111
71
0
07 Jun 2019
1