ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01429
  4. Cited By
The frontier of simulation-based inference

The frontier of simulation-based inference

4 November 2019
Kyle Cranmer
Johann Brehmer
Gilles Louppe
    AI4CE
ArXivPDFHTML

Papers citing "The frontier of simulation-based inference"

50 / 84 papers shown
Title
Representation Learning of Limit Order Book: A Comprehensive Study and Benchmarking
Representation Learning of Limit Order Book: A Comprehensive Study and Benchmarking
Muyao Zhong
Yushi Lin
Peng Yang
AI4TS
51
0
0
04 May 2025
Power-scaled Bayesian Inference with Score-based Generative Models
Power-scaled Bayesian Inference with Score-based Generative Models
Huseyin Tuna Erdinc
Yunlin Zeng
A. Gahlot
Felix J. Herrmann
23
0
0
15 Apr 2025
Discriminative versus Generative Approaches to Simulation-based Inference
Benjamin Sluijter
S. Diefenbacher
W. Bhimji
Benjamin Nachman
46
0
0
11 Mar 2025
Robust Simulation-Based Inference under Missing Data via Neural Processes
Yogesh Verma
Ayush Bharti
Vikas K. Garg
63
0
0
03 Mar 2025
Multifidelity Simulation-based Inference for Computationally Expensive Simulators
Multifidelity Simulation-based Inference for Computationally Expensive Simulators
Anastasia N. Krouglova
Hayden R. Johnson
Basile Confavreux
Michael Deistler
P. J. Gonçalves
71
1
0
17 Feb 2025
Field-level simulation-based inference with galaxy catalogs: the impact of systematic effects
Field-level simulation-based inference with galaxy catalogs: the impact of systematic effects
Natalí S. M. de Santi
F. Villaescusa-Navarro
L. Abramo
Helen Shao
Lucia A. Perez
...
F. Marinacci
D. Spergel
K. Dolag
L. Hernquist
M. Vogelsberger
59
4
0
28 Jan 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
Gert Aarts
Kenji Fukushima
Tetsuo Hatsuda
Andreas Ipp
S. Shi
L. Wang
K. Zhou
AI4CE
PINN
41
2
0
09 Jan 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
36
1
0
31 Dec 2024
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Julia Walchessen
Amanda Lenzi
Mikael Kuusela
30
9
0
31 Dec 2024
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
Ruben Ohana
Michael McCabe
Lucas Meyer
Rudy Morel
Fruzsina J. Agocs
...
François Rozet
Liam Parker
M. Cranmer
S. Ho
Shirley Ho
PINN
AI4CE
66
7
1
30 Nov 2024
Compositional simulation-based inference for time series
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
37
1
0
05 Nov 2024
Full-waveform earthquake source inversion using simulation-based inference
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
35
0
0
30 Oct 2024
TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
Stefan Wahl
Armand Rousselot
Felix Dräxler
Ullrich Kothe
Ullrich Köthe
24
0
0
25 Oct 2024
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
41
4
0
20 Oct 2024
Predictive variational inference: Learn the predictively optimal posterior distribution
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
26
0
0
18 Oct 2024
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
45
0
0
15 Oct 2024
Simulation-based inference with the Python Package sbijax
Simulation-based inference with the Python Package sbijax
Simon Dirmeier
S. Ulzega
Antonietta Mira
Carlo Albert
21
1
0
28 Sep 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
50
3
0
23 Aug 2024
ISR: Invertible Symbolic Regression
ISR: Invertible Symbolic Regression
Tony Tohme
M. J. Khojasteh
Mohsen Sadr
Florian Meyer
Kamal Youcef-Toumi
43
0
0
10 May 2024
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
34
3
0
29 Apr 2024
Full Event Particle-Level Unfolding with Variable-Length Latent Variational Diffusion
Full Event Particle-Level Unfolding with Variable-Length Latent Variational Diffusion
Alexander Shmakov
Kevin Greif
M. Fenton
A. Ghosh
Pierre Baldi
D. Whiteson
DiffM
108
9
0
22 Apr 2024
Copula Approximate Bayesian Computation Using Distribution Random
  Forests
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
32
1
0
28 Feb 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
19
3
0
06 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
  Intractable Likelihoods
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
21
0
0
30 Jan 2024
Hybrid Modeling Design Patterns
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
21
7
0
29 Dec 2023
Optimizing Likelihood-free Inference using Self-supervised Neural
  Symmetry Embeddings
Optimizing Likelihood-free Inference using Self-supervised Neural Symmetry Embeddings
D. Chatterjee
Philip C. Harris
Maanas Goel
Malina Desai
Michael W. Coughlin
E. Katsavounidis
23
1
0
11 Dec 2023
Amortized Bayesian Decision Making for simulation-based models
Amortized Bayesian Decision Making for simulation-based models
Mila Gorecki
Jakob H. Macke
Michael Deistler
18
1
0
05 Dec 2023
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates
  of an Antarctic Ice Shelf from Isochronal Layers
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates of an Antarctic Ice Shelf from Isochronal Layers
Guy Moss
V. Višnjević
Olaf Eisen
Falk M. Oraschewski
Cornelius Schroder
Jakob H. Macke
R. Drews
6
1
0
03 Dec 2023
A Metaheuristic for Amortized Search in High-Dimensional Parameter
  Spaces
A Metaheuristic for Amortized Search in High-Dimensional Parameter Spaces
Dominic Boutet
Sylvain Baillet
14
0
0
28 Sep 2023
Physics-Preserving AI-Accelerated Simulations of Plasma Turbulence
Physics-Preserving AI-Accelerated Simulations of Plasma Turbulence
Thorsten Glüsenkamp
Frank Jenko
Nils Thuerey
AI4CE
32
4
0
28 Sep 2023
Branches of a Tree: Taking Derivatives of Programs with Discrete and
  Branching Randomness in High Energy Physics
Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics
Michael Kagan
Lukas Heinrich
24
9
0
31 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
19
6
0
04 Aug 2023
Amortised Experimental Design and Parameter Estimation for User Models
  of Pointing
Amortised Experimental Design and Parameter Estimation for User Models of Pointing
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
17
7
0
19 Jul 2023
A probabilistic, data-driven closure model for RANS simulations with
  aleatoric, model uncertainty
A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty
A. Agrawal
P. Koutsourelakis
AI4CE
11
15
0
05 Jul 2023
Multiscale Flow for Robust and Optimal Cosmological Analysis
Multiscale Flow for Robust and Optimal Cosmological Analysis
B. Dai
U. Seljak
19
17
0
07 Jun 2023
Meta-Learned Models of Cognition
Meta-Learned Models of Cognition
Marcel Binz
Ishita Dasgupta
A. Jagadish
M. Botvinick
Jane X. Wang
Eric Schulz
26
23
0
12 Apr 2023
Sampling-Based Accuracy Testing of Posterior Estimators for General
  Inference
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Pablo Lemos
A. Coogan
Y. Hezaveh
Laurence Perreault Levasseur
27
30
0
06 Feb 2023
Misspecification-robust Sequential Neural Likelihood for
  Simulation-based Inference
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
20
10
0
31 Jan 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
36
12
0
27 Jan 2023
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
24
63
0
30 Nov 2022
Validation Diagnostics for SBI algorithms based on Normalizing Flows
Validation Diagnostics for SBI algorithms based on Normalizing Flows
J. Linhart
Alexandre Gramfort
P. L. C. R. M. -. Inria
33
7
0
17 Nov 2022
Rare event ABC-SMC$^{2}$
Rare event ABC-SMC2^{2}2
Ivis Kerama
Thomas Thorne
R. Everitt
13
0
0
03 Nov 2022
Efficient Data Mosaicing with Simulation-based Inference
Efficient Data Mosaicing with Simulation-based Inference
Andrew Gambardella
Youngjun Choi
Doyo Choi
Jinjoon Lee
16
0
0
26 Oct 2022
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Maksim Zhdanov
L. Randolph
T. Kluge
M. Nakatsutsumi
C. Gutt
M. Ganeva
Nico Hoffmann
34
0
0
04 Oct 2022
Compositional Score Modeling for Simulation-based Inference
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
60
24
0
28 Sep 2022
Improved Marginal Unbiased Score Expansion (MUSE) via Implicit
  Differentiation
Improved Marginal Unbiased Score Expansion (MUSE) via Implicit Differentiation
M. Millea
16
4
0
21 Sep 2022
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio
  Estimation
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
24
30
0
29 Aug 2022
Uncovering dark matter density profiles in dwarf galaxies with graph
  neural networks
Uncovering dark matter density profiles in dwarf galaxies with graph neural networks
Tri Nguyen
S. Mishra-Sharma
R. Williams
L. Necib
18
2
0
26 Aug 2022
Interpretable Uncertainty Quantification in AI for HEP
Interpretable Uncertainty Quantification in AI for HEP
Thomas Y. Chen
B. Dey
A. Ghosh
Michael Kagan
Brian D. Nord
Nesar Ramachandra
22
7
0
05 Aug 2022
12
Next