ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01429
  4. Cited By
The frontier of simulation-based inference

The frontier of simulation-based inference

4 November 2019
Kyle Cranmer
Johann Brehmer
Gilles Louppe
    AI4CE
ArXivPDFHTML

Papers citing "The frontier of simulation-based inference"

34 / 84 papers shown
Title
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
19
3
0
04 Aug 2022
Language Model Cascades
Language Model Cascades
David Dohan
Winnie Xu
Aitor Lewkowycz
Jacob Austin
David Bieber
...
Henryk Michalewski
Rif A. Saurous
Jascha Narain Sohl-Dickstein
Kevin Patrick Murphy
Charles Sutton
ReLM
LRM
22
98
0
21 Jul 2022
j-Wave: An open-source differentiable wave simulator
j-Wave: An open-source differentiable wave simulator
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
VLM
28
21
0
30 Jun 2022
Bayesian model calibration for block copolymer self-assembly:
  Likelihood-free inference and expected information gain computation via
  measure transport
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
19
11
0
22 Jun 2022
Field Level Neural Network Emulator for Cosmological N-body Simulations
Field Level Neural Network Emulator for Cosmological N-body Simulations
Drew Jamieson
Yin Li
Renan Alves de Oliveira
F. Villaescusa-Navarro
S. Ho
D. Spergel
8
27
0
09 Jun 2022
Nonparametric likelihood-free inference with Jensen-Shannon divergence
  for simulator-based models with categorical output
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
J. Corander
Ulpu Remes
Ida Holopainen
T. Koski
25
0
0
22 May 2022
Accelerated Bayesian SED Modeling using Amortized Neural Posterior
  Estimation
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation
C. Hahn
Peter Melchior
13
28
0
14 Mar 2022
Bayesian Optimisation for Robust Model Predictive Control under Model
  Parameter Uncertainty
Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty
Rel Guzman
Rafael Oliveira
Fabio Ramos
10
3
0
01 Mar 2022
Differentiable Matrix Elements with MadJax
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
17
19
0
28 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
18
42
0
09 Feb 2022
Population Calibration using Likelihood-Free Bayesian Inference
Population Calibration using Likelihood-Free Bayesian Inference
Christopher C. Drovandi
Brodie A. J. Lawson
A. Jenner
A. Browning
17
2
0
04 Feb 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
15
138
0
20 Dec 2021
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
22
34
0
16 Dec 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
31
31
0
25 Nov 2021
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
22
14
0
19 Nov 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian
  parameter inference for partially observed stochastic processes
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
18
15
0
26 Oct 2021
Detecting and Quantifying Malicious Activity with Simulation-based
  Inference
Detecting and Quantifying Malicious Activity with Simulation-based Inference
Andrew Gambardella
Bogdan State
Naemullah Khan
Leo Tsourides
Philip H. S. Torr
A. G. Baydin
15
2
0
06 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
29
6
0
29 Sep 2021
Probabilistic Inference of Simulation Parameters via Parallel
  Differentiable Simulation
Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation
Eric Heiden
Chris Denniston
David Millard
Fabio Ramos
Gaurav Sukhatme
22
21
0
18 Sep 2021
Neural Networks for Parameter Estimation in Intractable Models
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
16
49
0
29 Jul 2021
Real-time gravitational-wave science with neural posterior estimation
Real-time gravitational-wave science with neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
13
130
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
28
2
0
23 Jun 2021
Fitting summary statistics of neural data with a differentiable spiking
  network simulator
Fitting summary statistics of neural data with a differentiable spiking network simulator
G. Bellec
Shuqi Wang
Alireza Modirshanechi
Johanni Brea
W. Gerstner
26
11
0
18 Jun 2021
Gradient-based Bayesian Experimental Design for Implicit Models using
  Mutual Information Lower Bounds
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
22
25
0
10 May 2021
Learning physical properties of anomalous random walks using graph
  neural networks
Learning physical properties of anomalous random walks using graph neural networks
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
13
25
0
22 Mar 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable
  Generative Modeling
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
22
54
0
25 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
26
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
96
184
0
12 Jan 2021
Towards constraining warm dark matter with stellar streams through
  neural simulation-based inference
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
25
29
0
30 Nov 2020
Simulation-efficient marginal posterior estimation with swyft: stop
  wasting your precious time
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
Benjamin Kurt Miller
A. Cole
Gilles Louppe
Christoph Weniger
11
19
0
27 Nov 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Convolutional Neural Networks as Summary Statistics for Approximate
  Bayesian Computation
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation
Mattias Åkesson
Prashant Singh
Fredrik Wrede
A. Hellander
BDL
6
32
0
31 Jan 2020
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
40
57
0
05 Jun 2019
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,543
0
25 Jan 2016
Previous
12