Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.01429
Cited By
The frontier of simulation-based inference
4 November 2019
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The frontier of simulation-based inference"
34 / 84 papers shown
Title
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
19
3
0
04 Aug 2022
Language Model Cascades
David Dohan
Winnie Xu
Aitor Lewkowycz
Jacob Austin
David Bieber
...
Henryk Michalewski
Rif A. Saurous
Jascha Narain Sohl-Dickstein
Kevin Patrick Murphy
Charles Sutton
ReLM
LRM
22
98
0
21 Jul 2022
j-Wave: An open-source differentiable wave simulator
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
VLM
28
21
0
30 Jun 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
19
11
0
22 Jun 2022
Field Level Neural Network Emulator for Cosmological N-body Simulations
Drew Jamieson
Yin Li
Renan Alves de Oliveira
F. Villaescusa-Navarro
S. Ho
D. Spergel
8
27
0
09 Jun 2022
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
J. Corander
Ulpu Remes
Ida Holopainen
T. Koski
25
0
0
22 May 2022
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation
C. Hahn
Peter Melchior
13
28
0
14 Mar 2022
Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty
Rel Guzman
Rafael Oliveira
Fabio Ramos
10
3
0
01 Mar 2022
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
17
19
0
28 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
18
42
0
09 Feb 2022
Population Calibration using Likelihood-Free Bayesian Inference
Christopher C. Drovandi
Brodie A. J. Lawson
A. Jenner
A. Browning
17
2
0
04 Feb 2022
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
15
138
0
20 Dec 2021
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
22
34
0
16 Dec 2021
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
31
31
0
25 Nov 2021
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
22
14
0
19 Nov 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
18
15
0
26 Oct 2021
Detecting and Quantifying Malicious Activity with Simulation-based Inference
Andrew Gambardella
Bogdan State
Naemullah Khan
Leo Tsourides
Philip H. S. Torr
A. G. Baydin
15
2
0
06 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
29
6
0
29 Sep 2021
Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation
Eric Heiden
Chris Denniston
David Millard
Fabio Ramos
Gaurav Sukhatme
22
21
0
18 Sep 2021
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
16
49
0
29 Jul 2021
Real-time gravitational-wave science with neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
13
130
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
28
2
0
23 Jun 2021
Fitting summary statistics of neural data with a differentiable spiking network simulator
G. Bellec
Shuqi Wang
Alireza Modirshanechi
Johanni Brea
W. Gerstner
26
11
0
18 Jun 2021
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
22
25
0
10 May 2021
Learning physical properties of anomalous random walks using graph neural networks
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
13
25
0
22 Mar 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
22
54
0
25 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
26
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
96
184
0
12 Jan 2021
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
25
29
0
30 Nov 2020
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
Benjamin Kurt Miller
A. Cole
Gilles Louppe
Christoph Weniger
11
19
0
27 Nov 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation
Mattias Åkesson
Prashant Singh
Fredrik Wrede
A. Hellander
BDL
6
32
0
31 Jan 2020
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
40
57
0
05 Jun 2019
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,543
0
25 Jan 2016
Previous
1
2