Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.02590
Cited By
Optimizing Millions of Hyperparameters by Implicit Differentiation
6 November 2019
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing Millions of Hyperparameters by Implicit Differentiation"
50 / 102 papers shown
Title
Predicting Multi-Antenna Frequency-Selective Channels via Meta-Learned Linear Filters based on Long-Short Term Channel Decomposition
Sangwoo Park
Osvaldo Simeone
29
4
0
23 Mar 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
ACORT: A Compact Object Relation Transformer for Parameter Efficient Image Captioning
J. Tan
Y. Tan
C. Chan
Joon Huang Chuah
VLM
ViT
26
15
0
11 Feb 2022
Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient
Max W. Shen
25
18
0
10 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Efficient Automatic Differentiation of Implicit Functions
C. Margossian
M. Betancourt
30
2
0
28 Dec 2021
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Adaptive Incentive Design with Multi-Agent Meta-Gradient Reinforcement Learning
Jiachen Yang
Ethan Wang
Rakshit S. Trivedi
T. Zhao
H. Zha
30
21
0
20 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
73
26
0
06 Dec 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
61
69
0
09 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow
Kaiyi Ji
Yingbin Liang
28
28
0
13 Oct 2021
Value-Function-based Sequential Minimization for Bi-level Optimization
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
40
30
0
11 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
27
2
0
06 Oct 2021
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
Risheng Liu
Yaohua Liu
Shangzhi Zeng
Jin Zhang
21
80
0
01 Oct 2021
Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium Propagation
Sangwoo Park
Osvaldo Simeone
42
8
0
01 Oct 2021
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
59
10
0
13 Sep 2021
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
62
137
0
09 Sep 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
22
12
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
82
448
0
13 Jul 2021
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
Miao Zhang
Steven W. Su
Shirui Pan
Xiaojun Chang
Ehsan Abbasnejad
Reza Haffari
24
68
0
21 Jun 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
43
21
0
17 Jun 2021
A Value-Function-based Interior-point Method for Non-convex Bi-level Optimization
Risheng Liu
Xuan Liu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
15
79
0
15 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
51
81
0
11 Jun 2021
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
Evgenii Nikishin
Romina Abachi
Rishabh Agarwal
Pierre-Luc Bacon
OffRL
52
34
0
06 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models
Zaccharie Ramzi
Florian Mannel
Shaojie Bai
Jean-Luc Starck
P. Ciuciu
Thomas Moreau
29
28
0
01 Jun 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
59
222
0
27 Jan 2021
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
19
26
0
13 Nov 2020
Teaching with Commentaries
Aniruddh Raghu
M. Raghu
Simon Kornblith
David Duvenaud
Geoffrey E. Hinton
17
24
0
05 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
28
249
0
15 Oct 2020
Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning
Zhongzheng Ren
Raymond A. Yeh
A. Schwing
36
95
0
02 Jul 2020
On the Iteration Complexity of Hypergradient Computation
Riccardo Grazzi
Luca Franceschi
Massimiliano Pontil
Saverio Salzo
48
193
0
29 Jun 2020
Auxiliary Learning by Implicit Differentiation
Aviv Navon
Idan Achituve
Haggai Maron
Gal Chechik
Ethan Fetaya
28
59
0
22 Jun 2020
Meta Approach to Data Augmentation Optimization
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
32
34
0
14 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
38
226
0
06 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
32
7
0
05 Jun 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
58
1,935
0
11 Apr 2020
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
Yuanhao Wang
Guodong Zhang
Jimmy Ba
33
100
0
16 Oct 2019
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELM
OffRL
23
35
0
12 Sep 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
717
0
13 Jun 2018
Previous
1
2
3
Next