Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.04322
Cited By
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
11 November 2019
Zhu Li
Adrián Pérez-Suay
Gustau Camps-Valls
Dino Sejdinovic
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness"
9 / 9 papers shown
Title
Enabling Group Fairness in Graph Unlearning via Bi-level Debiasing
Yezi Liu
Prathyush Poduval
Wenjun Huang
Yang Ni
Hanning Chen
Mohsen Imani
MU
45
0
0
14 May 2025
A statistical approach to detect sensitive features in a group fairness setting
G. D. Pelegrina
Miguel Couceiro
L. Duarte
19
3
0
11 May 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
49
0
0
26 Jan 2023
Non-Gaussian Gaussian Processes for Few-Shot Regression
Marcin Sendera
Jacek Tabor
A. Nowak
Andrzej Bedychaj
Massimiliano Patacchiola
Tomasz Trzciñski
Przemysław Spurek
Maciej Ziȩba
23
19
0
26 Oct 2021
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
26
16
0
18 Oct 2021
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
Spectral Ranking with Covariates
Siu Lun Chau
Mihai Cucuringu
Dino Sejdinovic
16
9
0
08 May 2020
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
236
676
0
17 Feb 2018
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1