Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.05485
Cited By
Diffusion Improves Graph Learning
28 October 2019
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Diffusion Improves Graph Learning"
50 / 344 papers shown
Title
Temporal Graph Rewiring with Expander Graphs
Katarina Petrović
Shenyang Huang
Farimah Poursafaei
Petar Velickovic
AI4CE
45
4
0
04 Jun 2024
Graph Adversarial Diffusion Convolution
Songtao Liu
Jinghui Chen
Tianfan Fu
Lu Lin
Marinka Zitnik
Dinghao Wu
DiffM
26
2
0
04 Jun 2024
Learning on Large Graphs using Intersecting Communities
Ben Finkelshtein
.Ismail .Ilkan Ceylan
Michael M. Bronstein
Ron Levie
GNN
30
5
0
31 May 2024
Towards Deeper Understanding of PPR-based Embedding Approaches: A Topological Perspective
Xingyi Zhang
Zixuan Weng
Sibo Wang
28
4
0
30 May 2024
Spatio-Spectral Graph Neural Networks
Simon Geisler
Arthur Kosmala
Daniel Herbst
Stephan Günnemann
45
8
0
29 May 2024
Calibrated Dataset Condensation for Faster Hyperparameter Search
Mucong Ding
Yuancheng Xu
Tahseen Rabbani
Xiaoyu Liu
Brian J Gravelle
Teresa M. Ranadive
Tai-Ching Tuan
Furong Huang
DD
32
0
0
27 May 2024
Spectral Greedy Coresets for Graph Neural Networks
Mucong Ding
Yinhan He
Jundong Li
Furong Huang
23
3
0
27 May 2024
Probabilistic Graph Rewiring via Virtual Nodes
Chendi Qian
Andrei Manolache
Christopher Morris
Mathias Niepert
AI4CE
38
3
0
27 May 2024
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
34
7
0
22 May 2024
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing
Keke Huang
Yu Guang Wang
Ming Li
Pietro Lió
35
17
0
21 May 2024
Towards Graph Contrastive Learning: A Survey and Beyond
Wei Ju
Yifan Wang
Yifang Qin
Zhengyan Mao
Zhiping Xiao
...
Dongjie Wang
Qingqing Long
Siyu Yi
Xiao Luo
Ming Zhang
47
12
0
20 May 2024
A Comprehensive Survey on Data Augmentation
Zaitian Wang
Pengfei Wang
Kunpeng Liu
Pengyang Wang
Yanjie Fu
Chang-Tien Lu
Charu Aggarwal
Jian Pei
Yuanchun Zhou
ViT
95
21
0
15 May 2024
Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships
Qi Zou
Na Yu
Daoliang Zhang
Wei Zhang
Rui Gao
AI4CE
27
1
0
07 May 2024
ATNPA: A Unified View of Oversmoothing Alleviation in Graph Neural Networks
Yufei Jin
Xingquan Zhu
46
2
0
02 May 2024
CKGConv: General Graph Convolution with Continuous Kernels
Liheng Ma
Soumyasundar Pal
Yitian Zhang
Jiaming Zhou
Yingxue Zhang
Mark J. Coates
37
3
0
21 Apr 2024
Graph Neural Networks for Binary Programming
Moshe Eliasof
Eldad Haber
GNN
27
0
0
07 Apr 2024
Spectral Graph Pruning Against Over-Squashing and Over-Smoothing
Adarsh Jamadandi
Celia Rubio-Madrigal
R. Burkholz
40
1
0
06 Apr 2024
Convection-Diffusion Equation: A Theoretically Certified Framework for Neural Networks
Tangjun Wang
Chenglong Bao
Zuoqiang Shi
DiffM
36
0
0
23 Mar 2024
Graph Unitary Message Passing
Haiquan Qiu
Yatao Bian
Quanming Yao
24
2
0
17 Mar 2024
Optimizing Polynomial Graph Filters: A Novel Adaptive Krylov Subspace Approach
Keke Huang
Wencai Cao
Hoang Ta
Xiaokui Xiao
Pietro Lió
41
3
0
12 Mar 2024
A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Wei Ju
Siyu Yi
Yifan Wang
Zhiping Xiao
Zhengyan Mao
...
Senzhang Wang
Xinwang Liu
Xiao Luo
Philip S. Yu
Ming Zhang
AI4CE
34
36
0
07 Mar 2024
Graph Parsing Networks
Yunchong Song
Siyuan Huang
Xinbing Wang
Cheng Zhou
Zhouhan Lin
GNN
32
3
0
22 Feb 2024
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss
Paul Krzakala
Junjie Yang
Rémi Flamary
Florence dÁlché-Buc
Charlotte Laclau
Matthieu Labeau
OT
27
1
0
19 Feb 2024
PAC Learnability under Explanation-Preserving Graph Perturbations
Xu Zheng
Farhad Shirani
Tianchun Wang
Shouwei Gao
Wenqian Dong
Wei Cheng
Dongsheng Luo
22
0
0
07 Feb 2024
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
15
2
0
01 Feb 2024
Graph Contrastive Learning with Cohesive Subgraph Awareness
Yucheng Wu
Leye Wang
Xiao Han
Han-Jia Ye
19
3
0
31 Jan 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
19
3
0
25 Jan 2024
Learning to Approximate Adaptive Kernel Convolution on Graphs
Jaeyoon Sim
Sooyeon Jeon
Injun Choi
Guorong Wu
Won Hwa Kim
16
3
0
22 Jan 2024
On The Temporal Domain of Differential Equation Inspired Graph Neural Networks
Moshe Eliasof
E. Haber
Eran Treister
Carola-Bibiane Schönlieb
AI4CE
19
2
0
20 Jan 2024
Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification
Zinuo You
Pengju Zhang
Jin Zheng
John Cartlidge
AIFin
DiffM
13
5
0
05 Jan 2024
DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement Prediction
Zinuo You
Zijian Shi
Hongbo Bo
John Cartlidge
Li Zhang
Yan Ge
AIFin
DiffM
18
2
0
03 Jan 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
50
7
0
27 Dec 2023
Diffusion Maps for Signal Filtering in Graph Learning
Todd Hildebrant
DiffM
13
0
0
22 Dec 2023
PC-Conv: Unifying Homophily and Heterophily with Two-fold Filtering
Bingheng Li
Erlin Pan
Zhao Kang
14
30
0
22 Dec 2023
Degree-based stratification of nodes in Graph Neural Networks
Ameen Ali
Hakan Çevikalp
Lior Wolf
28
0
0
16 Dec 2023
Neural Gaussian Similarity Modeling for Differential Graph Structure Learning
Xiaolong Fan
Maoguo Gong
Yue Wu
Zedong Tang
Jie Liu
25
0
0
15 Dec 2023
Simplicial Representation Learning with Neural
k
k
k
-Forms
Kelly Maggs
Celia Hacker
Bastian Alexander Rieck
AI4CE
25
10
0
13 Dec 2023
The Graph Lottery Ticket Hypothesis: Finding Sparse, Informative Graph Structure
Anton Tsitsulin
Bryan Perozzi
24
5
0
08 Dec 2023
Graph Convolutions Enrich the Self-Attention in Transformers!
Jeongwhan Choi
Hyowon Wi
Jayoung Kim
Yehjin Shin
Kookjin Lee
Nathaniel Trask
Noseong Park
25
4
0
07 Dec 2023
An Effective Universal Polynomial Basis for Spectral Graph Neural Networks
Keke Huang
Pietro Lió
16
1
0
30 Nov 2023
AMES: A Differentiable Embedding Space Selection Framework for Latent Graph Inference
Yuan Lu
Haitz Sáez de Ocáriz Borde
Pietro Lio'
11
2
0
20 Nov 2023
Benchmarking Machine Learning Models for Quantum Error Correction
Yue Zhao
13
1
0
18 Nov 2023
Classification of developmental and brain disorders via graph convolutional aggregation
Ibrahim Salim
A. B. Hamza
MedIm
11
11
0
13 Nov 2023
Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges
Dai Shi
Andi Han
Lequan Lin
Yi Guo
Junbin Gao
47
11
0
13 Nov 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
29
3
0
02 Nov 2023
Pattern formation in vector-valued phase fields under convex constraints
O. Vantzos
AI4CE
11
0
0
02 Nov 2023
Robust Graph Clustering via Meta Weighting for Noisy Graphs
Hyeonsoo Jo
Fanchen Bu
Kijung Shin
OOD
NoLa
12
7
0
01 Nov 2023
A Quasi-Wasserstein Loss for Learning Graph Neural Networks
Minjie Cheng
Hongteng Xu
25
1
0
18 Oct 2023
PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly Detection
Junjun Pan
Yixin Liu
Yizhen Zheng
Shirui Pan
32
18
0
18 Oct 2023
Self-supervision meets kernel graph neural models: From architecture to augmentations
Jiawang Dan
Ruofan Wu
Yunpeng Liu
Baokun Wang
Changhua Meng
...
Tianyi Zhang
Ningtao Wang
Xin Fu
Qi Li
Weiqiang Wang
SSL
23
1
0
17 Oct 2023
Previous
1
2
3
4
5
6
7
Next