Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.05815
Cited By
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
13 November 2019
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning"
47 / 47 papers shown
Title
Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Alexander Levine
Peter Stone
Amy Zhang
OffRL
41
0
0
03 Oct 2024
The Central Role of the Loss Function in Reinforcement Learning
Kaiwen Wang
Nathan Kallus
Wen Sun
OffRL
56
7
0
19 Sep 2024
A Note on Loss Functions and Error Compounding in Model-based Reinforcement Learning
Nan Jiang
22
5
0
15 Apr 2024
Exploration is Harder than Prediction: Cryptographically Separating Reinforcement Learning from Supervised Learning
Noah Golowich
Ankur Moitra
Dhruv Rohatgi
OffRL
35
4
0
04 Apr 2024
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
27
5
0
09 Oct 2023
Policy Finetuning in Reinforcement Learning via Design of Experiments using Offline Data
Ruiqi Zhang
Andrea Zanette
OffRL
OnRL
40
7
0
10 Jul 2023
Provably Efficient Representation Learning with Tractable Planning in Low-Rank POMDP
Jiacheng Guo
Zihao Li
Huazheng Wang
Mengdi Wang
Zhuoran Yang
Xuezhou Zhang
32
5
0
21 Jun 2023
Accelerating exploration and representation learning with offline pre-training
Bogdan Mazoure
Jake Bruce
Doina Precup
Rob Fergus
Ankit Anand
OffRL
31
5
0
31 Mar 2023
Improved Sample Complexity for Reward-free Reinforcement Learning under Low-rank MDPs
Yuan Cheng
Ruiquan Huang
J. Yang
Yitao Liang
OffRL
41
8
0
20 Mar 2023
Fast exploration and learning of latent graphs with aliased observations
Miguel Lazaro-Gredilla
Ishani Deshpande
Siva K. Swaminathan
Meet Dave
Dileep George
23
3
0
13 Mar 2023
Distributional Offline Policy Evaluation with Predictive Error Guarantees
Runzhe Wu
Masatoshi Uehara
Wen Sun
OffRL
38
13
0
19 Feb 2023
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
Kaiwen Wang
Nathan Kallus
Wen Sun
107
18
0
07 Feb 2023
Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning
Riashat Islam
Hongyu Zang
Anirudh Goyal
Alex Lamb
Kenji Kawaguchi
Xin-hui Li
Romain Laroche
Yoshua Bengio
Rémi Tachet des Combes
OffRL
AI4CE
23
9
0
01 Nov 2022
Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
Dilip Arumugam
Satinder Singh
24
3
0
30 Oct 2022
Hardness in Markov Decision Processes: Theory and Practice
Michelangelo Conserva
Paulo E. Rauber
32
3
0
24 Oct 2022
Spectral Decomposition Representation for Reinforcement Learning
Tongzheng Ren
Tianjun Zhang
Lisa Lee
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
OffRL
40
27
0
19 Aug 2022
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning
Shuang Qiu
Lingxiao Wang
Chenjia Bai
Zhuoran Yang
Zhaoran Wang
SSL
OffRL
26
32
0
29 Jul 2022
Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models
Alex Lamb
Riashat Islam
Yonathan Efroni
Aniket Didolkar
Dipendra Kumar Misra
Dylan J. Foster
Lekan Molu
Rajan Chari
A. Krishnamurthy
John Langford
41
24
0
17 Jul 2022
Making Linear MDPs Practical via Contrastive Representation Learning
Tianjun Zhang
Tongzheng Ren
Mengjiao Yang
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
25
44
0
14 Jul 2022
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
Masatoshi Uehara
Ayush Sekhari
Jason D. Lee
Nathan Kallus
Wen Sun
OffRL
49
31
0
24 Jun 2022
On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL
Jinglin Chen
Aditya Modi
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
38
25
0
21 Jun 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
44
22
0
15 Jun 2022
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
29
25
0
09 Jun 2022
Uniqueness and Complexity of Inverse MDP Models
Marcus Hutter
S. Hansen
17
4
0
02 Jun 2022
Provable Benefits of Representational Transfer in Reinforcement Learning
Alekh Agarwal
Yuda Song
Wen Sun
Kaiwen Wang
Mengdi Wang
Xuezhou Zhang
OffRL
21
33
0
29 May 2022
Chemoreception and chemotaxis of a three-sphere swimmer
S. Paz
R. Ausas
J. P. Carbajal
G. Buscaglia
11
4
0
05 May 2022
When Is Partially Observable Reinforcement Learning Not Scary?
Qinghua Liu
Alan Chung
Csaba Szepesvári
Chi Jin
14
92
0
19 Apr 2022
Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning Approach
Xuezhou Zhang
Yuda Song
Masatoshi Uehara
Mengdi Wang
Alekh Agarwal
Wen Sun
OffRL
24
57
0
31 Jan 2022
A Free Lunch from the Noise: Provable and Practical Exploration for Representation Learning
Tongzheng Ren
Tianjun Zhang
Csaba Szepesvári
Bo Dai
22
19
0
22 Nov 2021
Representation Learning for Online and Offline RL in Low-rank MDPs
Masatoshi Uehara
Xuezhou Zhang
Wen Sun
OffRL
53
126
0
09 Oct 2021
The Information Geometry of Unsupervised Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
61
31
0
06 Oct 2021
Explore and Control with Adversarial Surprise
Arnaud Fickinger
Natasha Jaques
Samyak Parajuli
Michael Chang
Nicholas Rhinehart
Glen Berseth
Stuart J. Russell
Sergey Levine
32
8
0
12 Jul 2021
On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control
Amrit Singh Bedi
Anjaly Parayil
Junyu Zhang
Mengdi Wang
Alec Koppel
30
15
0
15 Jun 2021
Which Mutual-Information Representation Learning Objectives are Sufficient for Control?
Kate Rakelly
Abhishek Gupta
Carlos Florensa
Sergey Levine
SSL
26
38
0
14 Jun 2021
Learning Markov State Abstractions for Deep Reinforcement Learning
Cameron Allen
Neev Parikh
Omer Gottesman
George Konidaris
BDL
OffRL
29
35
0
08 Jun 2021
Rapid Exploration for Open-World Navigation with Latent Goal Models
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
24
70
0
12 Apr 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Return-Based Contrastive Representation Learning for Reinforcement Learning
Guoqing Liu
Chuheng Zhang
Li Zhao
Tao Qin
Jinhua Zhu
Jian Li
Nenghai Yu
Tie-Yan Liu
SSL
OffRL
11
47
0
22 Feb 2021
Model-Invariant State Abstractions for Model-Based Reinforcement Learning
Manan Tomar
Amy Zhang
Roberto Calandra
Matthew E. Taylor
Joelle Pineau
19
24
0
19 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
71
36
0
29 Jan 2021
Randomized Value Functions via Posterior State-Abstraction Sampling
Dilip Arumugam
Benjamin Van Roy
OffRL
28
7
0
05 Oct 2020
Contrastive learning, multi-view redundancy, and linear models
Christopher Tosh
A. Krishnamurthy
Daniel J. Hsu
SSL
8
163
0
24 Aug 2020
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
41
222
0
18 Jun 2020
Q
Q
Q
-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
37
59
0
16 Jun 2020
Deep Reinforcement and InfoMax Learning
Bogdan Mazoure
Rémi Tachet des Combes
T. Doan
Philip Bachman
R. Devon Hjelm
AI4CE
25
108
0
12 Jun 2020
Towards Understanding Cooperative Multi-Agent Q-Learning with Value Factorization
Jianhao Wang
Zhizhou Ren
Beining Han
Jianing Ye
Chongjie Zhang
OffRL
21
32
0
31 May 2020
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
112
194
0
07 Feb 2020
1