Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.07323
Cited By
Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks
17 November 2019
Difan Zou
Ziniu Hu
Yewen Wang
Song Jiang
Yizhou Sun
Quanquan Gu
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks"
50 / 166 papers shown
Title
Calibrate and Debias Layer-wise Sampling for Graph Convolutional Networks
Yifan Chen
Tianning Xu
Dilek Z. Hakkani-Tür
Di Jin
Yun Yang
Ruoqing Zhu
13
4
0
01 Jun 2022
AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning
Yongqi Zhang
Zhanke Zhou
Quanming Yao
X. Chu
Bo Han
17
44
0
30 May 2022
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Maciej Besta
Torsten Hoefler
GNN
32
56
0
19 May 2022
Label Efficient Regularization and Propagation for Graph Node Classification
Tian Xie
R. Kannan
C.-C. Jay Kuo
22
2
0
19 Apr 2022
A Survey on Dropout Methods and Experimental Verification in Recommendation
Y. Li
Weizhi Ma
C. L. Philip Chen
M. Zhang
Yiqun Liu
Shaoping Ma
Yue Yang
33
9
0
05 Apr 2022
A Survey on Graph Representation Learning Methods
Shima Khoshraftar
A. An
GNN
AI4TS
27
108
0
04 Apr 2022
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
Cheng Wan
Youjie Li
Ang Li
Namjae Kim
Yingyan Lin
GNN
27
75
0
21 Mar 2022
GRAND+: Scalable Graph Random Neural Networks
Wenzheng Feng
Yuxiao Dong
Tinglin Huang
Ziqi Yin
Xu Cheng
Evgeny Kharlamov
Jie Tang
GNN
22
41
0
12 Mar 2022
Data Augmentation for Deep Graph Learning: A Survey
Kaize Ding
Zhe Xu
Hanghang Tong
Huan Liu
OOD
GNN
19
218
0
16 Feb 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences
Meng Liu
Shuiwang Ji
GNN
22
3
0
07 Feb 2022
MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural Networks
R. Waleffe
J. Mohoney
Theodoros Rekatsinas
Shivaram Venkataraman
GNN
24
25
0
04 Feb 2022
Learning Stochastic Graph Neural Networks with Constrained Variance
Zhan Gao
Elvin Isufi
21
5
0
29 Jan 2022
Decoupling the Depth and Scope of Graph Neural Networks
Hanqing Zeng
Muhan Zhang
Yinglong Xia
Ajitesh Srivastava
Andrey Malevich
R. Kannan
Viktor Prasanna
Long Jin
Ren Chen
GNN
23
142
0
19 Jan 2022
Training Free Graph Neural Networks for Graph Matching
Zhiyuan Liu
Yixin Cao
Fuli Feng
Xiang Wang
Jie Tang
Kenji Kawaguchi
Tat-Seng Chua
19
0
0
14 Jan 2022
Local2Global: A distributed approach for scaling representation learning on graphs
Lucas G. S. Jeub
Giovanni Colavizza
Xiaowen Dong
Marya Bazzi
Mihai Cucuringu
18
1
0
12 Jan 2022
Bringing Your Own View: Graph Contrastive Learning without Prefabricated Data Augmentations
Yuning You
Tianlong Chen
Zhangyang Wang
Yang Shen
SSL
21
61
0
04 Jan 2022
Distributed Hybrid CPU and GPU training for Graph Neural Networks on Billion-Scale Graphs
Da Zheng
Xiang Song
Chengrun Yang
Dominique LaSalle
George Karypis
3DH
GNN
27
56
0
31 Dec 2021
Measuring and Sampling: A Metric-guided Subgraph Learning Framework for Graph Neural Network
Jiyang Bai
Yuxiang Ren
Jiawei Zhang
25
3
0
30 Dec 2021
Hierarchical Prototype Networks for Continual Graph Representation Learning
Xikun Zhang
Dongjin Song
Dacheng Tao
CLL
29
31
0
30 Nov 2021
Learn Locally, Correct Globally: A Distributed Algorithm for Training Graph Neural Networks
M. Ramezani
Weilin Cong
Mehrdad Mahdavi
M. Kandemir
A. Sivasubramaniam
GNN
14
32
0
16 Nov 2021
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Wenqing Zheng
Edward W. Huang
Nikhil S. Rao
S. Katariya
Zhangyang Wang
Karthik Subbian
24
61
0
08 Nov 2021
FedGraph: Federated Graph Learning with Intelligent Sampling
Fahao Chen
Peng Li
T. Miyazaki
Celimuge Wu
FedML
19
78
0
02 Nov 2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNN
MQ
25
47
0
27 Oct 2021
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
Shichang Zhang
Yozen Liu
Yizhou Sun
Neil Shah
31
173
0
17 Oct 2021
Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining
Tim Kaler
Nickolas Stathas
Anne Ouyang
A. Iliopoulos
Tao B. Schardl
C. E. Leiserson
Jie Chen
GNN
70
52
0
16 Oct 2021
IGLU: Efficient GCN Training via Lazy Updates
S. Narayanan
Aditya Sinha
Prateek Jain
Purushottam Kar
Sundararajan Sellamanickam
BDL
49
9
0
28 Sep 2021
Double-Scale Self-Supervised Hypergraph Learning for Group Recommendation
Junwei Zhang
Min Gao
Junliang Yu
Lei Guo
Jundong Li
Hongzhi Yin
16
123
0
09 Sep 2021
DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN
Yu Wang
Zhiwei Liu
Ziwei Fan
Lichao Sun
Philip S. Yu
20
47
0
26 Aug 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
27
61
0
24 Aug 2021
Local2Global: Scaling global representation learning on graphs via local training
Lucas G. S. Jeub
Giovanni Colavizza
Xiaowen Dong
Marya Bazzi
Mihai Cucuringu
21
2
0
26 Jul 2021
Large-scale graph representation learning with very deep GNNs and self-supervision
Ravichandra Addanki
Peter W. Battaglia
David Budden
Andreea Deac
Jonathan Godwin
...
Wai Lok Sibon Li
Alvaro Sanchez-Gonzalez
Jacklynn Stott
S. Thakoor
Petar Velivcković
SSL
AI4CE
27
25
0
20 Jul 2021
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
52
94
0
01 Jul 2021
Global Neighbor Sampling for Mixed CPU-GPU Training on Giant Graphs
Jialin Dong
Da Zheng
Lin F. Yang
Geroge Karypis
GNN
14
36
0
11 Jun 2021
GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings
Matthias Fey
J. E. Lenssen
F. Weichert
J. Leskovec
GNN
18
132
0
10 Jun 2021
Scaling Up Graph Neural Networks Via Graph Coarsening
Zengfeng Huang
Shengzhong Zhang
Chong Xi
T. Liu
Min Zhou
GNN
34
99
0
09 Jun 2021
GIPA: General Information Propagation Algorithm for Graph Learning
Qinkai Zheng
Houyi Li
Peng Zhang
Zhixiong Yang
Guowei Zhang
Xintan Zeng
Yongchao Liu
25
9
0
13 May 2021
Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth
Keyulu Xu
Mozhi Zhang
Stefanie Jegelka
Kenji Kawaguchi
GNN
12
75
0
10 May 2021
Scalable Graph Neural Network Training: The Case for Sampling
Marco Serafini
Hui Guan
GNN
39
23
0
05 May 2021
Self-supervised Graph Neural Networks without explicit negative sampling
Zekarias T. Kefato
Sarunas Girdzijauskas
SSL
19
39
0
27 Mar 2021
Bag of Tricks for Node Classification with Graph Neural Networks
Yangkun Wang
Jiarui Jin
Weinan Zhang
Yong Yu
Zheng-Wei Zhang
David Wipf
26
56
0
24 Mar 2021
Sampling methods for efficient training of graph convolutional networks: A survey
Xin Liu
Mingyu Yan
Lei Deng
Guoqi Li
Xiaochun Ye
Dongrui Fan
GNN
21
100
0
10 Mar 2021
On the Importance of Sampling in Training GCNs: Tighter Analysis and Variance Reduction
Weilin Cong
M. Ramezani
M. Mahdavi
21
5
0
03 Mar 2021
A Biased Graph Neural Network Sampler with Near-Optimal Regret
Qingru Zhang
David Wipf
Quan Gan
Le Song
40
24
0
01 Mar 2021
Pre-Training on Dynamic Graph Neural Networks
Ke-Jia Chen
Jiajun Zhang
Linpu Jiang
Yunyun Wang
Yuxuan Dai
AI4CE
11
15
0
24 Feb 2021
GIST: Distributed Training for Large-Scale Graph Convolutional Networks
Cameron R. Wolfe
Jingkang Yang
Arindam Chowdhury
Chen Dun
Artun Bayer
Santiago Segarra
Anastasios Kyrillidis
BDL
GNN
LRM
43
9
0
20 Feb 2021
Communication-Efficient Sampling for Distributed Training of Graph Convolutional Networks
Peng Jiang
Masuma Akter Rumi
GNN
14
6
0
19 Jan 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
Scalable Graph Neural Networks for Heterogeneous Graphs
Lingfan Yu
Jiajun Shen
Jinyang Li
Adam Lerer
GNN
30
49
0
19 Nov 2020
MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for Training Large Graph Convolutional Networks
Tao Huang
Yihan Zhang
Jiajing Wu
Junyuan Fang
Zibin Zheng
GNN
9
2
0
17 Nov 2020
Scalable Graph Neural Networks via Bidirectional Propagation
Ming Chen
Zhewei Wei
Bolin Ding
Yaliang Li
Ye Yuan
Xiaoyong Du
Ji-Rong Wen
GNN
16
142
0
29 Oct 2020
Previous
1
2
3
4
Next