ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08508
  4. Cited By
Parameters Estimation for the Cosmic Microwave Background with Bayesian
  Neural Networks

Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks

19 November 2019
Héctor J. Hortúa
Riccardo Volpi
D. Marinelli
Luigi Malagò
    BDL
ArXivPDFHTML

Papers citing "Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks"

9 / 9 papers shown
Title
Constraining cosmological parameters from N-body simulations with
  Variational Bayesian Neural Networks
Constraining cosmological parameters from N-body simulations with Variational Bayesian Neural Networks
Héctor J. Hortúa
L. '. García
Leonardo Castañeda C.
BDL
24
4
0
09 Jan 2023
Unsupervised Domain Adaptation for Constraining Star Formation Histories
Unsupervised Domain Adaptation for Constraining Star Formation Histories
Sankalp Gilda
Antoine de Mathelin
Sabine Bellstedt
Guillaume Richard
40
10
0
28 Dec 2021
Reconstructing Cosmic Polarization Rotation with ResUNet-CMB
Reconstructing Cosmic Polarization Rotation with ResUNet-CMB
E. Guzman
Joel Meyers
30
9
0
20 Sep 2021
Hierarchical Inference With Bayesian Neural Networks: An Application to
  Strong Gravitational Lensing
Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing
S. Wagner-Carena
Ji Won Park
S. Birrer
P. Marshall
A. Roodman
Risa Wechsler
UQCV
BDL
29
38
0
26 Oct 2020
Parameters Estimation from the 21 cm signal using Variational Inference
Parameters Estimation from the 21 cm signal using Variational Inference
Héctor J. Hortúa
Riccardo Volpi
Luigi Malagò
19
2
0
04 May 2020
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in
  Deep Learning Algorithms
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms
J. Caldeira
Brian D. Nord
BDL
UQCV
UD
19
79
0
22 Apr 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
207
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1