ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09033
  4. Cited By
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking

Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking

20 November 2019
Eric Crawford
Joelle Pineau
ArXivPDFHTML

Papers citing "Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking"

16 / 16 papers shown
Title
Neural Language of Thought Models
Neural Language of Thought Models
Yi-Fu Wu
Minseung Lee
Sungjin Ahn
MLLM
VLM
55
6
0
02 Feb 2024
Unsupervised Object-Centric Learning from Multiple Unspecified
  Viewpoints
Unsupervised Object-Centric Learning from Multiple Unspecified Viewpoints
Jinyang Yuan
Tonglin Chen
Zhimeng Shen
Bin Li
Xiangyang Xue
OCL
28
2
0
03 Jan 2024
Boosting Object Representation Learning via Motion and Object Continuity
Boosting Object Representation Learning via Motion and Object Continuity
Quentin Delfosse
Wolfgang Stammer
Thomas Rothenbacher
Dwarak Vittal
Kristian Kersting
OCL
37
20
0
16 Nov 2022
Neural Systematic Binder
Neural Systematic Binder
Gautam Singh
Yeongbin Kim
Sungjin Ahn
OCL
29
36
0
02 Nov 2022
Motion-inductive Self-supervised Object Discovery in Videos
Motion-inductive Self-supervised Object Discovery in Videos
Shuangrui Ding
Weidi Xie
Yabo Chen
Rui Qian
Xiaopeng Zhang
H. Xiong
Q. Tian
VOS
16
18
0
01 Oct 2022
Bridging the Gap to Real-World Object-Centric Learning
Bridging the Gap to Real-World Object-Centric Learning
Maximilian Seitzer
Max Horn
Andrii Zadaianchuk
Dominik Zietlow
Tianjun Xiao
...
Tong He
Zheng-Wei Zhang
Bernhard Schölkopf
Thomas Brox
Francesco Locatello
OCL
37
139
0
29 Sep 2022
Simple Unsupervised Object-Centric Learning for Complex and Naturalistic
  Videos
Simple Unsupervised Object-Centric Learning for Complex and Naturalistic Videos
Gautam Singh
Yi-Fu Wu
Sungjin Ahn
OCL
40
114
0
27 May 2022
Conditional Object-Centric Learning from Video
Conditional Object-Centric Learning from Video
Thomas Kipf
Gamaleldin F. Elsayed
Aravindh Mahendran
Austin Stone
S. Sabour
G. Heigold
Rico Jonschkowski
Alexey Dosovitskiy
Klaus Greff
OCL
39
214
0
24 Nov 2021
Generative Video Transformer: Can Objects be the Words?
Generative Video Transformer: Can Objects be the Words?
Yi-Fu Wu
Jaesik Yoon
Sungjin Ahn
ViT
24
34
0
20 Jul 2021
Opening up Open-World Tracking
Opening up Open-World Tracking
Yang Liu
Idil Esen Zulfikar
Jonathon Luiten
Achal Dave
Deva Ramanan
Bastian Leibe
Aljosa Osep
Laura Leal-Taixé
20
51
0
22 Apr 2021
Generative Neurosymbolic Machines
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDL
OCL
213
68
0
23 Oct 2020
Slot Contrastive Networks: A Contrastive Approach for Representing
  Objects
Slot Contrastive Networks: A Contrastive Approach for Representing Objects
Evan Racah
Sarath Chandar
OCL
DRL
21
14
0
18 Jul 2020
AutoTrajectory: Label-free Trajectory Extraction and Prediction from
  Videos using Dynamic Points
AutoTrajectory: Label-free Trajectory Extraction and Prediction from Videos using Dynamic Points
Yuexin Ma
Xinge ZHU
Xinjing Cheng
Ruigang Yang
Jiming Liu
Dinesh Manocha
3DPC
26
12
0
11 Jul 2020
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial
  Attention and Decomposition
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition
Zhixuan Lin
Yi-Fu Wu
Skand Peri
Weihao Sun
Gautam Singh
Fei Deng
Jindong Jiang
Sungjin Ahn
BDL
OCL
3DPC
28
246
0
08 Jan 2020
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object Representations
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCL
DRL
23
132
0
06 Oct 2019
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
238
438
0
01 Dec 2016
1