Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.01198
Cited By
Towards Understanding the Spectral Bias of Deep Learning
3 December 2019
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Understanding the Spectral Bias of Deep Learning"
50 / 129 papers shown
Title
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Matthias Höfler
Francesco Regazzoni
S. Pagani
Elias Karabelas
Christoph M. Augustin
Gundolf Haase
Gernot Plank
Federica Caforio
29
0
0
06 May 2025
Deep Learning Optimization Using Self-Adaptive Weighted Auxiliary Variables
Yaru Liu
Yiqi Gu
Michael K. Ng
ODL
52
0
0
30 Apr 2025
Hadamard product in deep learning: Introduction, Advances and Challenges
Grigorios G. Chrysos
Yongtao Wu
Razvan Pascanu
Philip Torr
V. Cevher
AAML
98
0
0
17 Apr 2025
Representation Learning for Tabular Data: A Comprehensive Survey
Jun-Peng Jiang
Si-Yang Liu
Hao-Run Cai
Qile Zhou
Han-Jia Ye
LMTD
46
0
0
17 Apr 2025
AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
Chenyang Xu
XingGuo Deng
Rui Zhong
34
0
0
28 Mar 2025
Neural Tangent Kernel of Neural Networks with Loss Informed by Differential Operators
Weiye Gan
Yicheng Li
Q. Lin
Zuoqiang Shi
39
0
0
14 Mar 2025
Do ImageNet-trained models learn shortcuts? The impact of frequency shortcuts on generalization
Shunxin Wang
Raymond N. J. Veldhuis
N. Strisciuglio
VLM
71
0
0
05 Mar 2025
On the study of frequency control and spectral bias in Wavelet-Based Kolmogorov Arnold networks: A path to physics-informed KANs
Juan Daniel Meshir
Abel Palafox
Edgar Alejandro Guerrero
62
3
0
01 Feb 2025
SNeRV: Spectra-preserving Neural Representation for Video
Jina Kim
Jihoo Lee
Je-Won Kang
35
3
0
03 Jan 2025
Addressing Spectral Bias of Deep Neural Networks by Multi-Grade Deep Learning
Ronglong Fang
Yuesheng Xu
24
3
0
21 Oct 2024
Fast Training of Sinusoidal Neural Fields via Scaling Initialization
Taesun Yeom
Sangyoon Lee
Jaeho Lee
53
2
0
07 Oct 2024
Tuning Frequency Bias of State Space Models
Annan Yu
Dongwei Lyu
S. H. Lim
Michael W. Mahoney
N. Benjamin Erichson
38
2
0
02 Oct 2024
Neural Video Representation for Redundancy Reduction and Consistency Preservation
Taiga Hayami
Takahiro Shindo
Shunsuke Akamatsu
Hiroshi Watanabe
34
1
0
27 Sep 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
56
3
0
05 Sep 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
38
2
0
18 Jul 2024
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
52
0
0
16 Jul 2024
Fine-grained Analysis of In-context Linear Estimation: Data, Architecture, and Beyond
Yingcong Li
A. S. Rawat
Samet Oymak
23
6
0
13 Jul 2024
Model-based learning for multi-antenna multi-frequency location-to-channel mapping
Baptiste Chatelier
Vincent Corlay
M. Crussiére
Luc Le Magoarou
31
1
0
17 Jun 2024
Forgetting Order of Continual Learning: Examples That are Learned First are Forgotten Last
Guy Hacohen
Tinne Tuytelaars
19
2
0
14 Jun 2024
VS-PINN: A fast and efficient training of physics-informed neural networks using variable-scaling methods for solving PDEs with stiff behavior
Seungchan Ko
Sang Hyeon Park
35
1
0
10 Jun 2024
Physics-enhanced Neural Operator for Simulating Turbulent Transport
Shengyu Chen
P. Givi
Can Zheng
Xiaowei Jia
AI4CE
36
2
0
31 May 2024
Can the accuracy bias by facial hairstyle be reduced through balancing the training data?
Kagan Öztürk
Haiyu Wu
Kevin W. Bowyer
CVBM
25
3
0
30 May 2024
A rationale from frequency perspective for grokking in training neural network
Zhangchen Zhou
Yaoyu Zhang
Z. Xu
38
2
0
24 May 2024
Understanding the dynamics of the frequency bias in neural networks
Juan Molina
Mircea Petrache
F. Sahli Costabal
Matías Courdurier
27
1
0
23 May 2024
Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
Kedar Karhadkar
Michael Murray
Guido Montúfar
32
2
0
23 May 2024
Loss Jump During Loss Switch in Solving PDEs with Neural Networks
Zhiwei Wang
Lulu Zhang
Zhongwang Zhang
Z. Xu
29
0
0
06 May 2024
FastVPINNs: Tensor-Driven Acceleration of VPINNs for Complex Geometries
T. Anandh
Divij Ghose
Himanshu Jain
Sashikumaar Ganesan
22
4
0
18 Apr 2024
Robust NAS under adversarial training: benchmark, theory, and beyond
Yongtao Wu
Fanghui Liu
Carl-Johann Simon-Gabriel
Grigorios G. Chrysos
V. Cevher
AAML
OOD
27
3
0
19 Mar 2024
Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes
Tobias Würth
Niklas Freymuth
C. Zimmerling
Gerhard Neumann
Luise Kärger
AI4CE
24
1
0
16 Feb 2024
Efficient Stagewise Pretraining via Progressive Subnetworks
Abhishek Panigrahi
Nikunj Saunshi
Kaifeng Lyu
Sobhan Miryoosefi
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
32
5
0
08 Feb 2024
Towards Understanding Inductive Bias in Transformers: A View From Infinity
Itay Lavie
Guy Gur-Ari
Z. Ringel
32
1
0
07 Feb 2024
A Novel Paradigm in Solving Multiscale Problems
Jing Wang
Zheng Li
Pengyu Lai
Rui Wang
Di Yang
Dewu Yang
Hui Xu
Wenquan Tao
AI4CE
14
0
0
07 Feb 2024
Comparing Spectral Bias and Robustness For Two-Layer Neural Networks: SGD vs Adaptive Random Fourier Features
Aku Kammonen
Lisi Liang
Anamika Pandey
Raúl Tempone
26
2
0
01 Feb 2024
Anchor function: a type of benchmark functions for studying language models
Zhongwang Zhang
Zhiwei Wang
Junjie Yao
Zhangchen Zhou
Xiaolong Li
E. Weinan
Z. Xu
32
5
0
16 Jan 2024
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models
Namjoon Suh
Guang Cheng
MedIm
22
12
0
14 Jan 2024
Physics-Informed Neural Networks for High-Frequency and Multi-Scale Problems using Transfer Learning
Abdul Hannan Mustajab
Hao Lyu
Z. Rizvi
Frank Wuttke
AI4CE
PINN
18
9
0
05 Jan 2024
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai
Ohad Shamir
29
14
0
26 Dec 2023
Model-based Deep Learning for Beam Prediction based on a Channel Chart
Taha Yassine
Baptiste Chatelier
Vincent Corlay
M. Crussiére
S. Paquelet
Olav Tirkkonen
Luc Le Magoarou
22
5
0
04 Dec 2023
Spectral-wise Implicit Neural Representation for Hyperspectral Image Reconstruction
Huan Chen
Wangcai Zhao
Tingfa Xu
Shiyun Zhou
Peifu Liu
Jianan Li
44
20
0
02 Dec 2023
Frequency Domain-based Dataset Distillation
DongHyeok Shin
Seungjae Shin
Il-Chul Moon
DD
35
19
0
15 Nov 2023
Harnessing Synthetic Datasets: The Role of Shape Bias in Deep Neural Network Generalization
Elior Benarous
Sotiris Anagnostidis
Luca Biggio
Thomas Hofmann
25
3
0
10 Nov 2023
Neural Tangent Kernels Motivate Graph Neural Networks with Cross-Covariance Graphs
Shervin Khalafi
Saurabh Sihag
Alejandro Ribeiro
11
0
0
16 Oct 2023
How Graph Neural Networks Learn: Lessons from Training Dynamics
Chenxiao Yang
Qitian Wu
David Wipf
Ruoyu Sun
Junchi Yan
AI4CE
GNN
19
1
0
08 Oct 2023
Model-based learning for location-to-channel mapping
Baptiste Chatelier
Luc Le Magoarou
Vincent Corlay
M. Crussiére
21
4
0
28 Aug 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
34
12
0
25 Aug 2023
An Expert's Guide to Training Physics-informed Neural Networks
Sifan Wang
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
28
96
0
16 Aug 2023
Controlling the Inductive Bias of Wide Neural Networks by Modifying the Kernel's Spectrum
Amnon Geifman
Daniel Barzilai
Ronen Basri
Meirav Galun
24
4
0
26 Jul 2023
SPDER: Semiperiodic Damping-Enabled Object Representation
Kathan Shah
Chawin Sitawarin
19
2
0
27 Jun 2023
Neural Volumetric Reconstruction for Coherent Synthetic Aperture Sonar
Albert W. Reed
Juhyeon Kim
Thomas E. Blanford
Adithya Pediredla
Daniel C. Brown
Suren Jayasuriya
19
16
0
16 Jun 2023
Understanding and Mitigating Extrapolation Failures in Physics-Informed Neural Networks
Lukas Fesser
Luca DÁmico-Wong
Richard Qiu
28
4
0
15 Jun 2023
1
2
3
Next