Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02365
Cited By
Lower Bounds for Non-Convex Stochastic Optimization
5 December 2019
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lower Bounds for Non-Convex Stochastic Optimization"
21 / 71 papers shown
Title
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
30
47
0
24 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
K. Zhang
Tamer Bacsar
31
57
0
12 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
46
44
0
07 Oct 2021
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
22
95
0
08 Jun 2021
Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization
Haochuan Li
Yi Tian
Jingzhao Zhang
Ali Jadbabaie
24
40
0
18 Apr 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
33
61
0
29 Mar 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
34
108
0
15 Feb 2021
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
22
173
0
18 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
32
82
0
07 Dec 2020
Practical Precoding via Asynchronous Stochastic Successive Convex Approximation
Basil M. Idrees
J. Akhtar
K. Rajawat
16
6
0
03 Oct 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
26
125
0
25 Aug 2020
Riemannian stochastic recursive momentum method for non-convex optimization
Andi Han
Junbin Gao
ODL
20
16
0
11 Aug 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
82
53
0
24 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
R. L. Jin
Tianbao Yang
31
44
0
17 Jun 2020
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
30
71
0
15 Jun 2020
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
Yucheng Lu
J. Nash
Christopher De Sa
FedML
21
12
0
14 May 2020
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
28
54
0
25 Feb 2020
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
31
561
0
19 Feb 2020
Learning Halfspaces with Massart Noise Under Structured Distributions
Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
24
59
0
13 Feb 2020
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
11
139
0
15 Feb 2019
Previous
1
2