Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.02365
Cited By
Lower Bounds for Non-Convex Stochastic Optimization
5 December 2019
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lower Bounds for Non-Convex Stochastic Optimization"
50 / 71 papers shown
Title
Observability conditions for neural state-space models with eigenvalues and their roots of unity
Andrew Gracyk
120
0
0
22 Apr 2025
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Y. Yang
Yi Zhou
Zhaosong Lu
49
0
0
29 Mar 2025
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
54
0
0
16 Mar 2025
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
100
0
0
21 Feb 2025
From Gradient Clipping to Normalization for Heavy Tailed SGD
Florian Hübler
Ilyas Fatkhullin
Niao He
40
5
0
17 Oct 2024
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
130
0
0
10 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
61
0
0
08 Oct 2024
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
43
2
0
28 Sep 2024
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
35
1
0
06 Aug 2024
Private Zeroth-Order Nonsmooth Nonconvex Optimization
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
40
4
0
27 Jun 2024
Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum
H. Cai
Sulaiman A. Alghunaim
Ali H.Sayed
43
1
0
18 Jun 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
35
4
0
16 May 2024
Learning Optimal Deterministic Policies with Stochastic Policy Gradients
Alessandro Montenegro
Marco Mussi
Alberto Maria Metelli
Matteo Papini
42
2
0
03 May 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
62
1
0
03 Apr 2024
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
Qi Zhang
Yi Zhou
Shaofeng Zou
34
3
0
01 Apr 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
40
3
0
19 Mar 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
29
6
0
05 Mar 2024
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Sayantan Choudhury
N. Tupitsa
Nicolas Loizou
Samuel Horváth
Martin Takáč
Eduard A. Gorbunov
30
1
0
05 Mar 2024
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong
Junhong Lin
46
10
0
06 Feb 2024
How Free is Parameter-Free Stochastic Optimization?
Amit Attia
Tomer Koren
ODL
44
4
0
05 Feb 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
25
7
0
17 Jan 2024
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
R. Karandikar
M. Vidyasagar
25
8
0
05 Dec 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
26
0
0
19 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
40
5
0
15 Oct 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
18
8
0
14 Jul 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
25
8
0
26 Jun 2023
Symmetry & Critical Points for Symmetric Tensor Decomposition Problems
Yossi Arjevani
Gal Vinograd
26
5
0
13 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
32
6
0
25 May 2023
Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods
Junchi Yang
Xiang Li
Ilyas Fatkhullin
Niao He
36
15
0
21 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
28
7
0
12 May 2023
Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold
S. Schechtman
D. Tiapkin
Michael Muehlebach
Eric Moulines
27
6
0
16 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
28
7
0
07 Mar 2023
A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic Composite Optimization
Tesi Xiao
Xuxing Chen
Krishnakumar Balasubramanian
Saeed Ghadimi
28
10
0
20 Feb 2023
Solving stochastic weak Minty variational inequalities without increasing batch size
Thomas Pethick
Olivier Fercoq
P. Latafat
Panagiotis Patrinos
V. Cevher
13
23
0
17 Feb 2023
SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance
Amit Attia
Tomer Koren
ODL
17
24
0
17 Feb 2023
Deterministic Nonsmooth Nonconvex Optimization
Michael I. Jordan
Guy Kornowski
Tianyi Lin
Ohad Shamir
Manolis Zampetakis
49
24
0
16 Feb 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
30
12
0
14 Feb 2023
Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation Constrained Optimization
Zichong Li
Pinzhuo Chen
Sijia Liu
Songtao Lu
Yangyang Xu
27
17
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
24
3
0
12 Dec 2022
Momentum Aggregation for Private Non-convex ERM
Hoang Tran
Ashok Cutkosky
18
14
0
12 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance) Noise in Federated Learning
Haibo Yang
Pei-Yuan Qiu
Jia Liu
FedML
27
12
0
03 Oct 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
49
51
0
12 Sep 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
27
16
0
18 Jul 2022
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
Quanqi Hu
Yongjian Zhong
Tianbao Yang
25
16
0
01 Jun 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
47
0
09 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
23
8
0
18 Feb 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
74
17
0
15 Feb 2022
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
1
2
Next