ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02762
  4. Cited By
Normalizing Flows for Probabilistic Modeling and Inference
v1v2 (latest)

Normalizing Flows for Probabilistic Modeling and Inference

Journal of machine learning research (JMLR), 2019
5 December 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
    TPMAI4CE
ArXiv (abs)PDFHTML

Papers citing "Normalizing Flows for Probabilistic Modeling and Inference"

10 / 1,110 papers shown
Title
Kullback-Leibler Divergence-Based Out-of-Distribution Detection with
  Flow-Based Generative Models
Kullback-Leibler Divergence-Based Out-of-Distribution Detection with Flow-Based Generative ModelsIEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Yufeng Zhang
Jia Pan
Wanwei Liu
Zhenbang Chen
Jing Wang
Zhiming Liu
KenLi Li
H. Wei
OODDDRL
380
6
0
09 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and SpheresInternational Conference on Machine Learning (ICML), 2020
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
246
171
0
06 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
207
124
0
15 Jan 2020
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGOIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
162
16
0
05 Nov 2019
Distilling Importance Sampling for Likelihood Free Inference
Distilling Importance Sampling for Likelihood Free InferenceJournal of Computational And Graphical Statistics (JCGS), 2019
D. Prangle
Cecilia Viscardi
301
5
0
08 Oct 2019
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space ModelsConference on Uncertainty in Artificial Intelligence (UAI), 2019
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDLAI4TS
292
8
0
02 Oct 2019
Neural Canonical Transformation with Symplectic Flows
Neural Canonical Transformation with Symplectic FlowsPhysical Review X (PRX), 2019
Shuo-Hui Li
Chen Dong
Linfeng Zhang
Lei Wang
DRL
400
29
0
30 Sep 2019
Validation of Approximate Likelihood and Emulator Models for
  Computationally Intensive Simulations
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive SimulationsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
182
9
0
27 May 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian InferenceAAAI Conference on Artificial Intelligence (AAAI), 2019
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
255
47
0
25 May 2019
MoGlow: Probabilistic and controllable motion synthesis using
  normalising flows
MoGlow: Probabilistic and controllable motion synthesis using normalising flowsACM Transactions on Graphics (TOG), 2019
G. Henter
Simon Alexanderson
Jonas Beskow
270
102
0
16 May 2019
Previous
123...212223