ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02762
  4. Cited By
Normalizing Flows for Probabilistic Modeling and Inference

Normalizing Flows for Probabilistic Modeling and Inference

5 December 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
    TPM
    AI4CE
ArXivPDFHTML

Papers citing "Normalizing Flows for Probabilistic Modeling and Inference"

50 / 277 papers shown
Title
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Aastha Acharya
Caleb Lee
Marissa DÁlonzo
Jared Shamwell
Nisar R. Ahmed
Rebecca L. Russell
BDL
41
0
0
30 May 2024
Efficient Prior Calibration From Indirect Data
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
M. Girolami
Andrew M. Stuart
A. Vadeboncoeur
38
1
0
28 May 2024
Transport of Algebraic Structure to Latent Embeddings
Transport of Algebraic Structure to Latent Embeddings
Samuel Pfrommer
Brendon G. Anderson
Somayeh Sojoudi
29
0
0
27 May 2024
ISR: Invertible Symbolic Regression
ISR: Invertible Symbolic Regression
Tony Tohme
M. J. Khojasteh
Mohsen Sadr
Florian Meyer
Kamal Youcef-Toumi
43
0
0
10 May 2024
A deep causal inference model for fully-interpretable travel behaviour
  analysis
A deep causal inference model for fully-interpretable travel behaviour analysis
K. Kamal
Bilal Farooq
40
0
0
02 May 2024
Deep generative modelling of canonical ensemble with differentiable
  thermal properties
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
31
1
0
29 Apr 2024
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
34
3
0
29 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Bayesian Inference for Consistent Predictions in Overparameterized
  Nonlinear Regression
Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression
Tomoya Wakayama
BDL
57
0
0
06 Apr 2024
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
35
2
0
05 Mar 2024
On the Asymptotic Mean Square Error Optimality of Diffusion Models
On the Asymptotic Mean Square Error Optimality of Diffusion Models
B. Fesl
Benedikt Bock
Florian Strasser
Michael Baur
M. Joham
Wolfgang Utschick
DiffM
33
0
0
05 Mar 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction
MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction
Jiahe Chen
Jinkun Cao
Dahua Lin
Kris M. Kitani
Jiangmiao Pang
36
5
0
19 Feb 2024
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Vijaya Krishna Yalavarthi
Randolf Scholz
Stefan Born
Lars Schmidt-Thieme
AI4TS
30
0
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
34
41
0
09 Feb 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
74
11
0
08 Feb 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
19
3
0
06 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
19
5
0
02 Feb 2024
Combining Normalizing Flows and Quasi-Monte Carlo
Combining Normalizing Flows and Quasi-Monte Carlo
Charly Andral
BDL
27
1
0
11 Jan 2024
TERM Model: Tensor Ring Mixture Model for Density Estimation
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan V. Oseledets
Yipeng Liu
26
1
0
13 Dec 2023
Optimizing Likelihood-free Inference using Self-supervised Neural
  Symmetry Embeddings
Optimizing Likelihood-free Inference using Self-supervised Neural Symmetry Embeddings
D. Chatterjee
Philip C. Harris
Maanas Goel
Malina Desai
Michael W. Coughlin
E. Katsavounidis
26
1
0
11 Dec 2023
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
Alex Costanzino
Pierluigi Zama Ramirez
Giuseppe Lisanti
Luigi Di Stefano
19
10
0
07 Dec 2023
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates
  of an Antarctic Ice Shelf from Isochronal Layers
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates of an Antarctic Ice Shelf from Isochronal Layers
Guy Moss
V. Višnjević
Olaf Eisen
Falk M. Oraschewski
Cornelius Schroder
Jakob H. Macke
R. Drews
6
1
0
03 Dec 2023
On Exact Inversion of DPM-Solvers
On Exact Inversion of DPM-Solvers
Seongmin Hong
Kyeonghyun Lee
Suh Yoon Jeon
Hyewon Bae
Se Young Chun
DiffM
29
21
0
30 Nov 2023
Multivariate Scenario Generation of Day-Ahead Electricity Prices using
  Normalizing Flows
Multivariate Scenario Generation of Day-Ahead Electricity Prices using Normalizing Flows
Hannes Hilger
D. Witthaut
Manuel Dahmen
L. R. Gorjão
Julius Trebbien
Eike Cramer
23
5
0
23 Nov 2023
Touring sampling with pushforward maps
Touring sampling with pushforward maps
Vivien A. Cabannes
Charles Arnal
26
0
0
23 Nov 2023
TURBO: The Swiss Knife of Auto-Encoders
TURBO: The Swiss Knife of Auto-Encoders
Guillaume Quétant
Yury Belousov
Vitaliy Kinakh
S. Voloshynovskiy
24
6
0
11 Nov 2023
Optimal simulation-based Bayesian decisions
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
23
1
0
09 Nov 2023
The voraus-AD Dataset for Anomaly Detection in Robot Applications
The voraus-AD Dataset for Anomaly Detection in Robot Applications
Jan Thiess Brockmann
Marco Rudolph
Bodo Rosenhahn
Bastian Wandt
21
11
0
08 Nov 2023
Adaptive importance sampling for Deep Ritz
Adaptive importance sampling for Deep Ritz
Xiaoliang Wan
Tao Zhou
Yuancheng Zhou
21
2
0
26 Oct 2023
Canonical normalizing flows for manifold learning
Canonical normalizing flows for manifold learning
Kyriakos Flouris
E. Konukoglu
DRL
48
7
0
19 Oct 2023
Exact nonlinear state estimation
Exact nonlinear state estimation
H. Chipilski
19
1
0
17 Oct 2023
CausalTime: Realistically Generated Time-series for Benchmarking of
  Causal Discovery
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
30
11
0
03 Oct 2023
Density Estimation via Measure Transport: Outlook for Applications in
  the Biological Sciences
Density Estimation via Measure Transport: Outlook for Applications in the Biological Sciences
Vanessa López-Marrero
Patrick R. Johnstone
Gilchan Park
Xihaier Luo
OT
29
1
0
27 Sep 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
13
1
0
26 Sep 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
30
22
0
20 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
21
6
0
04 Aug 2023
Decorrelation using Optimal Transport
Decorrelation using Optimal Transport
M. Algren
J. A. Raine
T. Golling
OT
23
1
0
11 Jul 2023
LINFA: a Python library for variational inference with normalizing flow
  and annealing
LINFA: a Python library for variational inference with normalizing flow and annealing
Yu Wang
Emma R. Cobian
Jubilee Lee
Fang Liu
J. Hauenstein
Daniele E. Schiavazzi
BDL
AI4CE
21
0
0
10 Jul 2023
Performance Modeling of Data Storage Systems using Generative Models
Performance Modeling of Data Storage Systems using Generative Models
A. Al-Maeeni
A. Temirkhanov
Artem Sergeevich Ryzhikov
M. Hushchyn
10
0
0
05 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
26
52
0
03 Jul 2023
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
8
3
0
15 Jun 2023
On Certified Generalization in Structured Prediction
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
21
0
0
15 Jun 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
13
2
0
01 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
GC-Flow: A Graph-Based Flow Network for Effective Clustering
GC-Flow: A Graph-Based Flow Network for Effective Clustering
Tianchun Wang
F. Mirzazadeh
X. Zhang
Jing Chen
BDL
40
7
0
26 May 2023
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Chen-Hao Chao
Wei-Fang Sun
Yen-Chang Hsu
Z. Kira
Chun-Yi Lee
25
2
0
24 May 2023
On Learning the Tail Quantiles of Driving Behavior Distributions via
  Quantile Regression and Flows
On Learning the Tail Quantiles of Driving Behavior Distributions via Quantile Regression and Flows
Jia Yu Tee
Oliver De Candido
Wolfgang Utschick
Philipp Geiger
27
0
0
22 May 2023
Inductive Simulation of Calorimeter Showers with Normalizing Flows
Inductive Simulation of Calorimeter Showers with Normalizing Flows
M. Buckley
Claudius Krause
Ian Pang
David Shih
AI4CE
8
22
0
19 May 2023
Computing high-dimensional optimal transport by flow neural networks
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
35
4
0
19 May 2023
Previous
123456
Next