ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02762
  4. Cited By
Normalizing Flows for Probabilistic Modeling and Inference

Normalizing Flows for Probabilistic Modeling and Inference

5 December 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
    TPM
    AI4CE
ArXivPDFHTML

Papers citing "Normalizing Flows for Probabilistic Modeling and Inference"

50 / 277 papers shown
Title
Solving time dependent Fokker-Planck equations via temporal normalizing
  flow
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
31
25
0
28 Dec 2021
Funnels: Exact maximum likelihood with dimensionality reduction
Funnels: Exact maximum likelihood with dimensionality reduction
Samuel Klein
J. A. Raine
Sebastian Pina-Otey
S. Voloshynovskiy
T. Golling
TPM
30
4
0
15 Dec 2021
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior
  Predictive Checks with Deep Learning
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
21
1
0
02 Dec 2021
Conditional Image Generation with Score-Based Diffusion Models
Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis
Jan Stanczuk
Carola-Bibiane Schönlieb
Christian Etmann
DiffM
6
180
0
26 Nov 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
IKFlow: Generating Diverse Inverse Kinematics Solutions
IKFlow: Generating Diverse Inverse Kinematics Solutions
Barrett Ames
Jeremy Morgan
G. Konidaris
12
34
0
17 Nov 2021
MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural
  Networks
MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks
Nicholas Hoernle
Rafael-Michael Karampatsis
Vaishak Belle
Y. Gal
19
58
0
02 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
22
32
0
29 Oct 2021
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter
  Showers with Normalizing Flows
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
29
64
0
21 Oct 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
29
21
0
21 Oct 2021
Probabilistic Time Series Forecasts with Autoregressive Transformation
  Models
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
48
12
0
15 Oct 2021
Deep Generative Modeling for Protein Design
Deep Generative Modeling for Protein Design
Alexey Strokach
Philip M. Kim
AI4CE
179
90
0
31 Aug 2021
Moser Flow: Divergence-based Generative Modeling on Manifolds
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRL
AI4CE
19
56
0
18 Aug 2021
Insights from Generative Modeling for Neural Video Compression
Insights from Generative Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
VGen
27
15
0
28 Jul 2021
Copula-Based Normalizing Flows
Copula-Based Normalizing Flows
M. Laszkiewicz
Johannes Lederer
Asja Fischer
27
7
0
15 Jul 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
14
22
0
05 Jul 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
31
37
0
02 Jul 2021
Differentiable Particle Filters through Conditional Normalizing Flow
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
21
20
0
01 Jul 2021
A Survey on Neural Speech Synthesis
A Survey on Neural Speech Synthesis
Xu Tan
Tao Qin
Frank Soong
Tie-Yan Liu
AI4TS
18
352
0
29 Jun 2021
Transflower: probabilistic autoregressive dance generation with
  multimodal attention
Transflower: probabilistic autoregressive dance generation with multimodal attention
Guillermo Valle Pérez
G. Henter
Jonas Beskow
A. Holzapfel
Pierre-Yves Oudeyer
Simon Alexanderson
19
42
0
25 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
22
10
0
25 Jun 2021
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Polina Kirichenko
Mehrdad Farajtabar
Dushyant Rao
Balaji Lakshminarayanan
Nir Levine
Ang Li
Huiyi Hu
A. Wilson
Razvan Pascanu
VLM
BDL
CLL
14
19
0
24 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
28
2
0
23 Jun 2021
Riemannian Convex Potential Maps
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
13
22
0
18 Jun 2021
A deep generative model for probabilistic energy forecasting in power
  systems: normalizing flows
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
24
81
0
17 Jun 2021
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
24
216
0
16 Jun 2021
A Flow-Based Neural Network for Time Domain Speech Enhancement
A Flow-Based Neural Network for Time Domain Speech Enhancement
Martin Strauss
B. Edler
13
33
0
16 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
13
81
0
09 Jun 2021
Marginalizable Density Models
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
32
5
0
08 Jun 2021
Concave Utility Reinforcement Learning: the Mean-Field Game Viewpoint
Concave Utility Reinforcement Learning: the Mean-Field Game Viewpoint
M. Geist
Julien Pérolat
Mathieu Laurière
Romuald Elie
Sarah Perrin
Olivier Bachem
Rémi Munos
Olivier Pietquin
19
62
0
07 Jun 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
20
1
0
03 Jun 2021
Normalizing Flows for Knockoff-free Controlled Feature Selection
Normalizing Flows for Knockoff-free Controlled Feature Selection
Derek Hansen
Brian Manzo
Jeffrey Regier
OOD
27
5
0
03 Jun 2021
Principal Component Density Estimation for Scenario Generation Using
  Normalizing Flows
Principal Component Density Estimation for Scenario Generation Using Normalizing Flows
Eike Cramer
Alexander Mitsos
Raúl Tempone
Manuel Dahmen
27
13
0
21 Apr 2021
3D Shape Generation and Completion through Point-Voxel Diffusion
3D Shape Generation and Completion through Point-Voxel Diffusion
Linqi Zhou
Yilun Du
Jiajun Wu
DiffM
24
510
0
08 Apr 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
15
7
0
17 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
16
10
0
14 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
11
7
0
12 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
26
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
98
184
0
12 Jan 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
31
336
0
20 Nov 2020
Self Normalizing Flows
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
22
14
0
14 Nov 2020
Can We Trust Deep Speech Prior?
Can We Trust Deep Speech Prior?
Ying Shi
Haolin Chen
Zhiyuan Tang
Lantian Li
Dong Wang
Jiqing Han
19
1
0
04 Nov 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
24
41
0
26 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
75
3
0
22 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
47
0
24 Aug 2020
Time Series Source Separation with Slow Flows
Time Series Source Separation with Slow Flows
Edouard Pineau
S. Razakarivony
Thomas Bonald
BDL
AI4TS
26
2
0
20 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
20
33
0
14 Jul 2020
Previous
123456
Next