Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.03192
Cited By
Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations
6 December 2019
Sven Gowal
Chongli Qin
Po-Sen Huang
taylan. cemgil
Krishnamurthy Dvijotham
Timothy A. Mann
Pushmeet Kohli
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations"
20 / 20 papers shown
Title
Unveiling AI's Blind Spots: An Oracle for In-Domain, Out-of-Domain, and Adversarial Errors
Shuangpeng Han
Mengmi Zhang
116
0
0
03 Oct 2024
On Counterfactual Data Augmentation Under Confounding
Abbavaram Gowtham Reddy
Saketh Bachu
Saloni Dash
Charchit Sharma
Amit Sharma
V. Balasubramanian
CML
BDL
33
0
0
29 May 2023
Assessing Neural Network Robustness via Adversarial Pivotal Tuning
Peter Ebert Christensen
Vésteinn Snaebjarnarson
Andrea Dittadi
Serge J. Belongie
Sagie Benaim
AAML
23
1
0
17 Nov 2022
Discovering Bugs in Vision Models using Off-the-shelf Image Generation and Captioning
Olivia Wiles
Isabela Albuquerque
Sven Gowal
VLM
30
47
0
18 Aug 2022
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev
Anian Ruoss
Mislav Balunović
Maximilian Baader
Martin Vechev
FaML
36
19
0
26 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
19
106
0
26 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
22
293
0
18 Oct 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Exposing Previously Undetectable Faults in Deep Neural Networks
Isaac Dunn
Hadrien Pouget
Daniel Kroening
T. Melham
AAML
23
28
0
01 Jun 2021
Ensembling with Deep Generative Views
Lucy Chai
Jun-Yan Zhu
Eli Shechtman
Phillip Isola
Richard Y. Zhang
GAN
27
70
0
29 Apr 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
27
268
0
02 Mar 2021
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
46
24
0
19 Nov 2020
Training Generative Adversarial Networks by Solving Ordinary Differential Equations
Chongli Qin
Yan Wu
Jost Tobias Springenberg
Andrew Brock
Jeff Donahue
Timothy Lillicrap
Pushmeet Kohli
GAN
22
28
0
28 Oct 2020
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
30
80
0
27 Oct 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
279
10,348
0
12 Dec 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
185
302
0
21 May 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
238
3,190
0
30 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1