Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.03263
Cited By
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
6 December 2019
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One"
50 / 360 papers shown
Title
Learning Energy-Based Models With Adversarial Training
Xuwang Yin
Shiying Li
Gustavo K. Rohde
AAML
DiffM
33
9
0
11 Dec 2020
Composite Adversarial Attacks
Xiaofeng Mao
YueFeng Chen
Shuhui Wang
Hang Su
Yuan He
Hui Xue
AAML
30
47
0
10 Dec 2020
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
Dennis Ulmer
Giovanni Cina
OODD
32
31
0
09 Dec 2020
Accurate 3D Object Detection using Energy-Based Models
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
3DPC
35
10
0
08 Dec 2020
Deep Energy-Based NARX Models
J. Hendriks
Fredrik K. Gustafsson
Antônio H. Ribeiro
A. Wills
Thomas B. Schon
17
10
0
08 Dec 2020
Perfect density models cannot guarantee anomaly detection
Charline Le Lan
Laurent Dinh
30
49
0
07 Dec 2020
Contrastive Divergence Learning is a Time Reversal Adversarial Game
Omer Yair
T. Michaeli
GAN
18
6
0
06 Dec 2020
Semi-Supervised Learning with Variational Bayesian Inference and Maximum Uncertainty Regularization
Kien Do
T. Tran
Svetha Venkatesh
BDL
14
3
0
03 Dec 2020
Improved Contrastive Divergence Training of Energy Based Models
Yilun Du
Shuang Li
J. Tenenbaum
Igor Mordatch
39
138
0
02 Dec 2020
Energy-Based Models for Continual Learning
Shuang Li
Yilun Du
Gido M. van de Ven
Igor Mordatch
27
42
0
24 Nov 2020
Dense open-set recognition with synthetic outliers generated by Real NVP
Matej Grcić
Petra Bevandić
Sinisa Segvic
8
40
0
22 Nov 2020
Multiscale Score Matching for Out-of-Distribution Detection
Ahsan Mahmood
Junier Oliva
M. Styner
OODD
6
30
0
25 Oct 2020
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
14
39
0
25 Oct 2020
Semi-supervised Learning by Latent Space Energy-Based Model of Symbol-Vector Coupling
Bo Pang
Erik Nijkamp
Jiali Cui
Tian Han
Ying Nian Wu
SSL
32
4
0
19 Oct 2020
Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models
Fan Bao
Kun Xu
Chongxuan Li
Lanqing Hong
Jun Zhu
Bo Zhang
DiffM
22
8
0
16 Oct 2020
Bi-level Score Matching for Learning Energy-based Latent Variable Models
Fan Bao
Chongxuan Li
Kun Xu
Hang Su
Jun Zhu
Bo Zhang
24
13
0
15 Oct 2020
No MCMC for me: Amortized sampling for fast and stable training of energy-based models
Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
David Duvenaud
11
70
0
08 Oct 2020
Set Prediction without Imposing Structure as Conditional Density Estimation
David W. Zhang
Gertjan J. Burghouts
Cees G. M. Snoek
48
17
0
08 Oct 2020
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
71
1,290
0
08 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Conditional Generative Modeling via Learning the Latent Space
Sameera Ramasinghe
Kanchana Ranasinghe
Salman Khan
Nick Barnes
Stephen Gould
BDL
31
9
0
07 Oct 2020
Generative Model-Enhanced Human Motion Prediction
Anthony Bourached
Ryan-Rhys Griffiths
Robert J. Gray
A. Jha
P. Nachev
26
15
0
05 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
16
123
0
01 Oct 2020
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model
Zhuonan He
Yikun Zhang
Yu Guan
S. Niu
Yi Zhang
Yang Chen
Qiegen Liu
DiffM
MedIm
30
12
0
27 Sep 2020
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
20
779
0
24 Sep 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Likelihood Landscapes: A Unifying Principle Behind Many Adversarial Defenses
Fu-Huei Lin
Rohit Mittapalli
Prithvijit Chattopadhyay
Daniel Bolya
Judy Hoffman
AAML
46
2
0
25 Aug 2020
Generative Classifiers as a Basis for Trustworthy Image Classification
Radek Mackowiak
Lynton Ardizzone
Ullrich Kothe
Carsten Rother
14
4
0
29 Jul 2020
Hybrid Discriminative-Generative Training via Contrastive Learning
Hao Liu
Pieter Abbeel
SSL
20
40
0
17 Jul 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
11
588
0
16 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
31
53
0
07 Jul 2020
Kernel Stein Generative Modeling
Wei-Cheng Chang
Chun-Liang Li
Youssef Mroueh
Yiming Yang
DiffM
BDL
33
5
0
06 Jul 2020
Supermasks in Superposition
Mitchell Wortsman
Vivek Ramanujan
Rosanne Liu
Aniruddha Kembhavi
Mohammad Rastegari
J. Yosinski
Ali Farhadi
SSL
CLL
19
279
0
26 Jun 2020
Strictly Batch Imitation Learning by Energy-based Distribution Matching
Daniel Jarrett
Ioana Bica
M. Schaar
OffRL
13
62
0
25 Jun 2020
Telescoping Density-Ratio Estimation
Benjamin Rhodes
Kai Xu
Michael U. Gutmann
25
94
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
16,947
0
19 Jun 2020
Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features
R. Schirrmeister
Yuxuan Zhou
T. Ball
Dan Zhang
UQCV
6
88
0
18 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
25
169
0
16 Jun 2020
Rethinking the Role of Gradient-Based Attribution Methods for Model Interpretability
Suraj Srinivas
F. Fleuret
FAtt
13
1
0
16 Jun 2020
Exponential Tilting of Generative Models: Improving Sample Quality by Training and Sampling from Latent Energy
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
8
8
0
15 Jun 2020
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDL
UQCV
6
0
0
11 Jun 2020
EDropout: Energy-Based Dropout and Pruning of Deep Neural Networks
Hojjat Salehinejad
S. Valaee
8
44
0
07 Jun 2020
A Convolutional Deep Markov Model for Unsupervised Speech Representation Learning
Sameer Khurana
Antoine Laurent
Wei-Ning Hsu
J. Chorowski
A. Lancucki
R. Marxer
James R. Glass
SSL
BDL
14
29
0
03 Jun 2020
Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models
Mitch Hill
Jonathan Mitchell
Song-Chun Zhu
AAML
16
68
0
27 May 2020
Lifted Regression/Reconstruction Networks
R. Høier
Christopher Zach
16
7
0
07 May 2020
How to Train Your Energy-Based Model for Regression
Fredrik K. Gustafsson
Martin Danelljan
Radu Timofte
Thomas B. Schon
40
42
0
04 May 2020
Protecting Classifiers From Attacks. A Bayesian Approach
Víctor Gallego
Roi Naveiro
A. Redondo
D. Insua
Fabrizio Ruggeri
AAML
11
2
0
18 Apr 2020
Compositional Visual Generation and Inference with Energy Based Models
Yilun Du
Shuang Li
Igor Mordatch
CoGe
19
23
0
13 Apr 2020
Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling by Exploring Energy of the Discriminator
Yuxuan Song
Qiwei Ye
Minkai Xu
Tie-Yan Liu
19
8
0
05 Apr 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
98
0
20 Mar 2020
Previous
1
2
3
4
5
6
7
8
Next