Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1912.03277
Cited By
v1
v2
v3 (latest)
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
6 December 2019
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (31★)
Papers citing
"Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers"
50 / 137 papers shown
Title
Actionable and diverse counterfactual explanations incorporating domain knowledge and causal constraints
Szymon Bobek
Łukasz Bałec
Grzegorz J. Nalepa
12
0
0
25 Nov 2025
TriShGAN: Enhancing Sparsity and Robustness in Multivariate Time Series Counterfactuals Explanation
Hongnan Ma
Yiwei Shi
Guanxiong Sun
Mengyue Yang
Weiru Liu
AI4TS
94
0
0
09 Nov 2025
Towards Personalized Treatment Plan: Geometrical Model-Agnostic Approach to Counterfactual Explanations
Daniel Sin
Milad Toutounchian
158
0
0
27 Oct 2025
Synthesising Counterfactual Explanations via Label-Conditional Gaussian Mixture Variational Autoencoders
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
CML
113
0
0
06 Oct 2025
ACE: Adapting sampling for Counterfactual Explanations
Margarita A. Guerrero
Cristian R. Rojas
94
1
0
30 Sep 2025
An Explainable Gaussian Process Auto-encoder for Tabular Data
Wei Zhang
Brian Barr
John Paisley
CML
118
1
0
31 Aug 2025
RealAC: A Domain-Agnostic Framework for Realistic and Actionable Counterfactual Explanations
Asiful Arefeen
Shovito Barua Soumma
Hassan Ghasemzadeh
CML
80
0
0
14 Aug 2025
Designing User-Centric Metrics for Evaluation of Counterfactual Explanations
Firdaus Ahmed Choudhury
Ethan Leicht
Jude Ethan Bislig
Hangzhi Guo
A. Yadav
78
0
0
20 Jul 2025
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
249
1
0
22 Feb 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
762
16
0
10 Jan 2025
Counterfactual Explanations via Riemannian Latent Space Traversal
Paraskevas Pegios
Aasa Feragen
Andreas Abildtrup Hansen
Georgios Arvanitidis
BDL
221
7
0
04 Nov 2024
Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
Yinhan He
Zaiyi Zheng
Patrick Soga
Yaozhen Zhu
Yushun Dong
Jundong Li
187
2
0
19 Oct 2024
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
486
4
0
18 Oct 2024
Good Data Is All Imitation Learning Needs
Amir Samadi
K. Koufos
Kurt Debattista
M. Dianati
OffRL
181
3
0
26 Sep 2024
2D-OOB: Attributing Data Contribution through Joint Valuation Framework
Neural Information Processing Systems (NeurIPS), 2024
Yifan Sun
Jingyan Shen
Yongchan Kwon
TDI
323
4
0
07 Aug 2024
Watermarking Counterfactual Explanations
Hangzhi Guo
Amulya Yadav
AAML
180
0
0
29 May 2024
Probabilistically Plausible Counterfactual Explanations with Normalizing Flows
Patryk Wielopolski
Oleksii Furman
Jerzy Stefanowski
Maciej Ziȩba
253
7
0
27 May 2024
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
Patryk Wielopolski
Oleksii Furman
Łukasz Lenkiewicz
Jerzy Stefanowski
Maciej Ziȩba
335
5
0
27 May 2024
IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
Fredrik D. Johansson
CML
209
0
0
25 May 2024
Trustworthy Actionable Perturbations
International Conference on Machine Learning (ICML), 2024
Jesse Friedbaum
Sudarshan Adiga
Ravi Tandon
AAML
224
2
0
18 May 2024
A Framework for Feasible Counterfactual Exploration incorporating Causality, Sparsity and Density
Dimitris Sacharidis
Dimitris Fotakis
V. Kalogeraki
Dimitrios Gunopulos
CML
177
0
0
20 Apr 2024
Model-Based Counterfactual Explanations Incorporating Feature Space Attributes for Tabular Data
Yuta Sumiya
Hayaru Shouno
AAML
OOD
158
0
0
20 Apr 2024
Enhancing Counterfactual Explanation Search with Diffusion Distance and Directional Coherence
M. Domnich
Raul Vicente
159
4
0
19 Apr 2024
Exploiting Preference Elicitation in Interactive and User-centered Algorithmic Recourse: An Initial Exploration
Seyedehdelaram Esfahani
Giovanni De Toni
Bruno Lepri
Baptiste Caramiaux
Katya Tentori
Massimo Zancanaro
227
8
0
08 Apr 2024
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
J. Herbinger
Marvin N. Wright
AAML
273
6
0
04 Apr 2024
Causal Feature Selection for Responsible Machine Learning
Raha Moraffah
Paras Sheth
Saketh Vishnubhatla
Huan Liu
CML
167
3
0
05 Feb 2024
Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution
Neural Information Processing Systems (NeurIPS), 2024
Ian Covert
Chanwoo Kim
Su-In Lee
James Zou
Tatsunori Hashimoto
TDI
281
14
0
29 Jan 2024
Generating Likely Counterfactuals Using Sum-Product Networks
International Conference on Learning Representations (ICLR), 2024
Jiri Nemecek
Tomás Pevný
Georgios Korpas
TPM
499
4
0
25 Jan 2024
Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset
Pattern Analysis and Applications (PAA), 2024
William Taylor-Melanson
Zahra Sadeghi
Stan Matwin
CML
167
7
0
21 Jan 2024
Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals
Patrick Altmeyer
Mojtaba Farmanbar
A. V. Deursen
Cynthia C. S. Liem
132
6
0
17 Dec 2023
Learning impartial policies for sequential counterfactual explanations using Deep Reinforcement Learning
E. Panagiotou
Eirini Ntoutsi
CML
OffRL
BDL
189
0
0
01 Nov 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
420
9
0
11 Oct 2023
Towards Feasible Counterfactual Explanations: A Taxonomy Guided Template-based NLG Method
European Conference on Artificial Intelligence (ECAI), 2023
Pedram Salimi
Nirmalie Wiratunga
D. Corsar
A. Wijekoon
154
2
0
03 Oct 2023
Designing User-Centric Behavioral Interventions to Prevent Dysglycemia with Novel Counterfactual Explanations
Asiful Arefeen
Hassan Ghasemzadeh
179
5
0
02 Oct 2023
On the Trade-offs between Adversarial Robustness and Actionable Explanations
AAAI/ACM Conference on AI, Ethics, and Society (AIES), 2023
Satyapriya Krishna
Chirag Agarwal
Himabindu Lakkaraju
AAML
213
1
0
28 Sep 2023
Towards LLM-guided Causal Explainability for Black-box Text Classifiers
Amrita Bhattacharjee
Raha Moraffah
Joshua Garland
Huan Liu
235
47
0
23 Sep 2023
Towards User Guided Actionable Recourse
AAAI/ACM Conference on AI, Ethics, and Society (AIES), 2023
Jayanth Yetukuri
Ian Hardy
Yang Liu
145
4
0
05 Sep 2023
Prediction without Preclusion: Recourse Verification with Reachable Sets
International Conference on Learning Representations (ICLR), 2023
Avni Kothari
B. Kulynych
Tsui-Wei Weng
Berk Ustun
FaML
253
7
0
24 Aug 2023
SafeAR: Safe Algorithmic Recourse by Risk-Aware Policies
AAAI Conference on Artificial Intelligence (AAAI), 2023
Haochen Wu
Sanjay Kariyappa
Sunandita Patra
Sriram Gopalakrishnan
253
1
0
23 Aug 2023
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models
International Conference on Learning Representations (ICLR), 2023
Peiyan Zhang
Hao Liu
Chaozhuo Li
Xing Xie
Sunghun Kim
Haohan Wang
VLM
OOD
292
9
0
21 Aug 2023
Assessing Systematic Weaknesses of DNNs using Counterfactuals
AI and Ethics (AE), 2023
Sujan Sai Gannamaneni
Michael Mock
Maram Akila
AAML
176
4
0
03 Aug 2023
Counterfactual Explanation Policies in RL
Shripad Deshmukh
R Srivatsan
Supriti Vijay
Jayakumar Subramanian
Chirag Agarwal
OffRL
193
0
0
25 Jul 2023
Simple Steps to Success: Axiomatics of Distance-Based Algorithmic Recourse
Jenny Hamer
Jake Valladares
Vignesh Viswanathan
Yair Zick
214
2
0
27 Jun 2023
Explainable Predictive Maintenance
Sepideh Pashami
Sławomir Nowaczyk
Yuantao Fan
Jakub Jakubowski
Nuno Paiva
...
Bruno Veloso
M. Sayed-Mouchaweh
L. Rajaoarisoa
Grzegorz J. Nalepa
João Gama
184
17
0
08 Jun 2023
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
International Conference on Machine Learning (ICML), 2023
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
310
23
0
26 May 2023
Achieving Diversity in Counterfactual Explanations: a Review and Discussion
Conference on Fairness, Accountability and Transparency (FAccT), 2023
Thibault Laugel
Adulam Jeyasothy
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
162
15
0
10 May 2023
counterfactuals: An R Package for Counterfactual Explanation Methods
Susanne Dandl
Andreas Hofheinz
Martin Binder
J. Herbinger
Giuseppe Casalicchio
259
2
0
13 Apr 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2023
Tri Dung Duong
Qian Li
Guandong Xu
OOD
200
7
0
26 Mar 2023
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
AAAI Conference on Artificial Intelligence (AAAI), 2023
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
290
1
0
24 Mar 2023
Semi-supervised counterfactual explanations
Shravan Kumar Sajja
Sumanta Mukherjee
Satyam Dwivedi
OOD
CML
90
2
0
22 Mar 2023
1
2
3
Next