ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05651
  4. Cited By
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection

Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection

11 December 2019
Erik A. Daxberger
José Miguel Hernández-Lobato
    UQCV
ArXivPDFHTML

Papers citing "Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection"

19 / 19 papers shown
Title
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Kevin Raina
UQCV
BDL
UD
PER
66
0
0
24 Feb 2025
Bayesian Domain Invariant Learning via Posterior Generalization of
  Parameter Distributions
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDL
OOD
29
1
0
25 Oct 2023
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected
  Reconstruction
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction
Xu Tan
Jiawei Yang
Junqi Chen
S. Rahardja
S. Rahardja
UQCV
9
1
0
03 Apr 2023
Towards Dependable Autonomous Systems Based on Bayesian Deep Learning
  Components
Towards Dependable Autonomous Systems Based on Bayesian Deep Learning Components
F. Arnez
H. Espinoza
A. Radermacher
F. Terrier
UQCV
19
4
0
12 Jan 2023
Do Bayesian Variational Autoencoders Know What They Don't Know?
Do Bayesian Variational Autoencoders Know What They Don't Know?
Misha Glazunov
Apostolis Zarras
UQCV
BDL
25
5
0
29 Dec 2022
A Bayesian Framework for Digital Twin-Based Control, Monitoring, and
  Data Collection in Wireless Systems
A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data Collection in Wireless Systems
Clement Ruah
Osvaldo Simeone
Bashir M. Al-Hashimi
24
28
0
02 Dec 2022
Bayesian Continual Learning via Spiking Neural Networks
Bayesian Continual Learning via Spiking Neural Networks
N. Skatchkovsky
Hyeryung Jang
Osvaldo Simeone
BDL
33
17
0
29 Aug 2022
Laplacian Autoencoders for Learning Stochastic Representations
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
30
10
0
30 Jun 2022
Bayesian autoencoders with uncertainty quantification: Towards
  trustworthy anomaly detection
Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection
Bang Xiang Yong
Alexandra Brintrup
UQCV
21
24
0
25 Feb 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
65
17
0
22 Feb 2022
Improving Variational Autoencoder based Out-of-Distribution Detection
  for Embedded Real-time Applications
Improving Variational Autoencoder based Out-of-Distribution Detection for Embedded Real-time Applications
Yeli Feng
Daniel Jun Xian Ng
Arvind Easwaran
OODD
31
17
0
25 Jul 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
UQCV
OOD
29
39
0
09 May 2021
Generative Model-Enhanced Human Motion Prediction
Generative Model-Enhanced Human Motion Prediction
Anthony Bourached
Ryan-Rhys Griffiths
Robert J. Gray
A. Jha
P. Nachev
26
15
0
05 Oct 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
36
50
0
16 Jul 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
40
111
0
11 Jun 2020
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
16
50
0
02 Jul 2019
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,338
0
12 Feb 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1