ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.08111
  4. Cited By
HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application
  for Probabilistic Occupancy Map Forecasting

HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application for Probabilistic Occupancy Map Forecasting

17 December 2019
Geunseob Oh
Jean-Sebastien Valois
    BDL
ArXivPDFHTML

Papers citing "HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application for Probabilistic Occupancy Map Forecasting"

3 / 3 papers shown
Title
Lightweight and interpretable neural modeling of an audio distortion
  effect using hyperconditioned differentiable biquads
Lightweight and interpretable neural modeling of an audio distortion effect using hyperconditioned differentiable biquads
S. Nercessian
Andy M. Sarroff
K. Werner
6
28
0
15 Mar 2021
IntentNet: Learning to Predict Intention from Raw Sensor Data
IntentNet: Learning to Predict Intention from Raw Sensor Data
Sergio Casas
Wenjie Luo
R. Urtasun
3DPC
152
362
0
20 Jan 2021
Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction
Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction
Ajay Jain
Sergio Casas
Renjie Liao
Yuwen Xiong
Song Feng
Sean Segal
R. Urtasun
138
73
0
17 Oct 2019
1