Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.08001
Cited By
Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks
22 January 2020
Oliver Willers
Sebastian Sudholt
Shervin Raafatnia
Stephanie Abrecht
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks"
17 / 17 papers shown
Title
A Systematic Literature Review on Safety of the Intended Functionality for Automated Driving Systems
Milin Patel
Rolf Jung
M. Khatun
67
0
0
04 Mar 2025
Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review
Anton Kuznietsov
Balint Gyevnar
Cheng Wang
Steven Peters
Stefano V. Albrecht
XAI
26
26
0
08 Feb 2024
Characterizing Perspective Error in Voxel-Based Lidar Scan Matching
Jason Rife
Matthew McDermott
22
3
0
24 Jan 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
25
4
0
18 Jan 2024
Synergistic Perception and Control Simplex for Verifiable Safe Vertical Landing
Ayoosh Bansal
Yang Zhao
James Zhu
Sheng Cheng
Yuliang Gu
Hyung-Jin Yoon
Hunmin Kim
N. Hovakimyan
Lui Sha
13
2
0
05 Dec 2023
Labeling Neural Representations with Inverse Recognition
Kirill Bykov
Laura Kopf
Shinichi Nakajima
Marius Kloft
Marina M.-C. Höhne
BDL
19
15
0
22 Nov 2023
Combating noisy labels in object detection datasets
K. Chachula
Jakub Lyskawa
Bartlomiej Olber
Piotr Fratczak
A. Popowicz
Krystian Radlak
NoLa
21
4
0
25 Nov 2022
Perception Simplex: Verifiable Collision Avoidance in Autonomous Vehicles Amidst Obstacle Detection Faults
Ayoosh Bansal
Hunmin Kim
Simon Yu
Bo-wen Li
N. Hovakimyan
Marco Caccamo
L. Sha
AAML
26
4
0
04 Sep 2022
Verifiable Obstacle Detection
Ayoosh Bansal
Hunmin Kim
Simon Yu
Bo-Yi Li
N. Hovakimyan
Marco Caccamo
L. Sha
23
6
0
30 Aug 2022
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Markus Borg
Jens Henriksson
Kasper Socha
Olof Lennartsson
Elias Sonnsjo Lonegren
T. Bui
Piotr Tomaszewski
S. Sathyamoorthy
Sebastian Brink
M. H. Moghadam
22
23
0
16 Apr 2022
Security for Machine Learning-based Software Systems: a survey of threats, practices and challenges
Huaming Chen
Muhammad Ali Babar
AAML
29
21
0
12 Jan 2022
Is the Rush to Machine Learning Jeopardizing Safety? Results of a Survey
M. Askarpour
Alan Wassyng
M. Lawford
R. Paige
Z. Diskin
15
0
0
29 Nov 2021
Exposing Previously Undetectable Faults in Deep Neural Networks
Isaac Dunn
Hadrien Pouget
Daniel Kroening
T. Melham
AAML
23
28
0
01 Jun 2021
Quality Assurance Challenges for Machine Learning Software Applications During Software Development Life Cycle Phases
Md. Abdullah Al Alamin
Gias Uddin
24
11
0
03 May 2021
Requirement Engineering Challenges for AI-intense Systems Development
Hans-Martin Heyn
E. Knauss
Amna Pir Muhammad
O. Eriksson
Jennifer Linder
P. Subbiah
S. K. Pradhan
Sagar Tungal
22
33
0
18 Mar 2021
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
222
0
20 Nov 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1