ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.00041
  4. Cited By
On Implicit Regularization in $β$-VAEs

On Implicit Regularization in βββ-VAEs

31 January 2020
Abhishek Kumar
Ben Poole
    DRL
ArXivPDFHTML

Papers citing "On Implicit Regularization in $β$-VAEs"

13 / 13 papers shown
Title
RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D
  LiDAR Segmentation
RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation
Li Li
Hubert P. H. Shum
T. Breckon
3DPC
40
7
0
14 Jul 2024
On Kernel-based Variational Autoencoder
On Kernel-based Variational Autoencoder
Tian Qin
Wei-Min Huang
DRL
BDL
58
1
0
21 May 2024
Flow Matching in Latent Space
Flow Matching in Latent Space
Quan Dao
Hao Phung
Binh Duc Nguyen
Anh Tran
37
60
0
17 Jul 2023
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
30
41
0
06 Feb 2023
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
26
21
0
15 Sep 2022
Implicit Regularization with Polynomial Growth in Deep Tensor
  Factorization
Implicit Regularization with Polynomial Growth in Deep Tensor Factorization
Kais Hariz
Hachem Kadri
Stéphane Ayache
Maher Moakher
Thierry Artières
26
2
0
18 Jul 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
32
19
0
06 Jun 2022
Variational autoencoders in the presence of low-dimensional data:
  landscape and implicit bias
Variational autoencoders in the presence of low-dimensional data: landscape and implicit bias
Frederic Koehler
Viraj Mehta
Chenghui Zhou
Andrej Risteski
DRL
28
12
0
13 Dec 2021
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric
  Embedding
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding
Akira Nakagawa
Keizo Kato
Taiji Suzuki
DRL
15
9
0
30 Jul 2020
Towards a Theoretical Understanding of the Robustness of Variational
  Autoencoders
Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
A. Camuto
M. Willetts
Stephen J. Roberts
Chris Holmes
Tom Rainforth
AAML
DRL
21
29
0
14 Jul 2020
Regularized linear autoencoders recover the principal components,
  eventually
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
26
29
0
13 Jul 2020
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
111
25
0
05 Sep 2019
Bayesian Inference with Posterior Regularization and applications to
  Infinite Latent SVMs
Bayesian Inference with Posterior Regularization and applications to Infinite Latent SVMs
Jun Zhu
Ning Chen
Eric P. Xing
BDL
65
157
0
05 Oct 2012
1