Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.00498
Cited By
DYNOTEARS: Structure Learning from Time-Series Data
2 February 2020
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CML
AI4TS
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DYNOTEARS: Structure Learning from Time-Series Data"
50 / 50 papers shown
Title
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
50
0
0
06 Mar 2025
Causal Temporal Regime Structure Learning
Abdellah Rahmani
Pascal Frossard
CML
93
2
0
20 Feb 2025
SpaceTime: Causal Discovery from Non-Stationary Time Series
Sarah Mameche
Lénaïg Cornanguer
Urmi Ninad
Jilles Vreeken
CML
AI4TS
49
0
0
20 Jan 2025
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Yue Cheng
Jiajun Zhang
Weiwei Xing
Xiaoyu Guo
Yue Cheng
Witold Pedrycz
CML
34
0
0
25 Oct 2024
Sortability of Time Series Data
Christopher Lohse
Jonas Wahl
CML
47
1
0
18 Jul 2024
CausalMMM: Learning Causal Structure for Marketing Mix Modeling
Chang Gong
Di Yao
Lei Zhang
Sheng Chen
Wenbin Li
Yueyang Su
Jingping Bi
39
5
0
24 Jun 2024
ExDAG: Exact learning of DAGs
Pavel Rytír
Ales Wodecki
Jakub Marecek
CML
48
1
0
21 Jun 2024
Standardizing Structural Causal Models
Weronika Ormaniec
Scott Sussex
Lars Lorch
Bernhard Schölkopf
Andreas Krause
CML
58
5
0
17 Jun 2024
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Georg Manten
Cecilia Casolo
E. Ferrucci
Søren Wengel Mogensen
C. Salvi
Niki Kilbertus
CML
BDL
46
8
0
28 Feb 2024
Towards Automated Causal Discovery: a case study on 5G telecommunication data
Konstantina Biza
Antonios Ntroumpogiannis
Sofia Triantafillou
Ioannis Tsamardinos
36
0
0
22 Feb 2024
Enhancing the Performance of Neural Networks Through Causal Discovery and Integration of Domain Knowledge
Xiaoge Zhang
Xiao-Lin Wang
Fenglei Fan
Yiu-ming Cheung
Indranil Bose
38
1
0
29 Nov 2023
Discovering Mixtures of Structural Causal Models from Time Series Data
Sumanth Varambally
Yi Ma
Rose Yu
22
5
0
10 Oct 2023
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
30
11
0
03 Oct 2023
Case Studies of Causal Discovery from IT Monitoring Time Series
Ali Aït-Bachir
Charles K. Assaad
Christophe de Bignicourt
Emilie Devijver
Simon Ferreira
Éric Gaussier
Hosein Mohanna
Lei Zan
CML
AI4TS
36
8
0
28 Jul 2023
Learning DAGs from Data with Few Root Causes
Panagiotis Misiakos
Chris Wendler
Markus Püschel
CML
44
10
0
25 May 2023
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
51
75
0
21 May 2023
CUTS+: High-dimensional Causal Discovery from Irregular Time-series
Yuxiao Cheng
Lianglong Li
Tingxiong Xiao
Zongren Li
Qionghai Dai
J. Suo
K. He
CML
BDL
AI4TS
26
22
0
10 May 2023
On Learning Time Series Summary DAGs: A Frequency Domain Approach
Aramayis Dallakyan
CML
AI4TS
30
3
0
17 Apr 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
37
24
0
27 Mar 2023
eCDANs: Efficient Temporal Causal Discovery from Autocorrelated and Non-stationary Data (Student Abstract)
Muhammad Hasan Ferdous
Uzma Hasan
Md. Osman Gani
28
2
0
06 Mar 2023
CUTS: Neural Causal Discovery from Irregular Time-Series Data
Yuxiao Cheng
Runzhao Yang
Tingxiong Xiao
Zongren Li
J. Suo
K. He
Qionghai Dai
OOD
BDL
AI4TS
CML
29
25
0
15 Feb 2023
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets
Lazar Atanackovic
Alexander Tong
Bo Wang
Leo J. Lee
Yoshua Bengio
Jason S. Hartford
BDL
34
22
0
08 Feb 2023
CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data
Muhammad Hasan Ferdous
Uzma Hasan
Md. Osman Gani
CML
44
3
0
07 Feb 2023
Hierarchical Graph Neural Networks for Causal Discovery and Root Cause Localization
Dongjie Wang
Zhengzhang Chen
Jingchao Ni
Liang Tong
Zheng Wang
Yanjie Fu
Haifeng Chen
AI4CE
13
17
0
03 Feb 2023
Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour
Rhys Howard
Lars Kunze
CML
25
7
0
31 Jan 2023
GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
Yang Sun
Yifan Xie
BDL
CML
34
1
0
28 Jan 2023
Causal Structural Learning from Time Series: A Convex Optimization Approach
S. Wei
Yao Xie
CML
32
2
0
26 Jan 2023
Causal Recurrent Variational Autoencoder for Medical Time Series Generation
Hongming Li
Shujian Yu
José C. Príncipe
CML
BDL
MedIm
28
47
0
16 Jan 2023
Sensor data-driven analysis for identification of causal relationships between exposure to air pollution and respiratory rate in asthmatics
D. Arvind
S. Maiya
19
1
0
16 Jan 2023
On the Limit of Explaining Black-box Temporal Graph Neural Networks
Minh Nhat Vu
My T. Thai
26
4
0
02 Dec 2022
Directed Acyclic Graph Structure Learning from Dynamic Graphs
Shaohua Fan
Shuyang Zhang
Xiao Wang
Chuan Shi
CML
39
5
0
30 Nov 2022
Estimation of a Causal Directed Acyclic Graph Process using Non-Gaussianity
A. Einizade
S. H. Sardouie
CML
36
0
0
24 Nov 2022
Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with Graph Neural Networks
Yue Yu
Xuan Kan
Hejie Cui
Ran Xu
Yu Zheng
...
Kun Zhang
Razieh Nabi
Ying Guo
Chaogang Zhang
Carl Yang
13
18
0
01 Nov 2022
Temporally Disentangled Representation Learning
Weiran Yao
Guangyi Chen
Kun Zhang
CML
BDL
OOD
32
49
0
24 Oct 2022
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
30
7
0
24 Oct 2022
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
66
78
0
16 Sep 2022
On the Sparse DAG Structure Learning Based on Adaptive Lasso
Danru Xu
Erdun Gao
Wei Huang
Menghan Wang
Andy Song
Biwei Huang
CML
32
4
0
07 Sep 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Biwei Huang
Kun Zhang
Javen Qinfeng Shi
37
25
0
30 Aug 2022
Achieving Long-Term Fairness in Sequential Decision Making
Yaowei Hu
Lu Zhang
25
20
0
04 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
51
57
0
31 Mar 2022
Multi-task Learning of Order-Consistent Causal Graphs
Xinshi Chen
Haoran Sun
Caleb N. Ellington
Eric Xing
Le Song
CML
27
15
0
03 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
47
38
0
18 Oct 2021
Causal Discovery from Conditionally Stationary Time Series
Carles Balsells-Rodas
Ruibo Tu
Hedvig Kjellström
Yingzhen Li
Gabriele Schweikert
Hedvig Kjellstrom
Yingzhen Li
BDL
CML
AI4TS
39
5
0
12 Oct 2021
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
43
24
0
23 Jun 2021
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
26
44
0
06 May 2021
Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data
A. Lawrence
Marcus Kaiser
Rui Sampaio
Maksim Sipos
CML
AI4TS
37
17
0
16 Apr 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
37
65
0
12 Apr 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
43
297
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
27
136
0
26 Feb 2021
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
119
257
0
29 Sep 2019
1