Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.03712
Cited By
On Contrastive Learning for Likelihood-free Inference
10 February 2020
Conor Durkan
Iain Murray
George Papamakarios
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Contrastive Learning for Likelihood-free Inference"
50 / 77 papers shown
Title
Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
Julius Vetter
Manuel Gloeckler
Daniel Gedon
Jakob H Macke
36
0
0
24 Apr 2025
Simulation-based inference for stochastic nonlinear mixed-effects models with applications in systems biology
Henrik Häggström
Sebastian Persson
Marija Cvijovic
Umberto Picchini
24
0
0
15 Apr 2025
Multifidelity Simulation-based Inference for Computationally Expensive Simulators
Anastasia N. Krouglova
Hayden R. Johnson
Basile Confavreux
Michael Deistler
P. J. Gonçalves
71
1
0
17 Feb 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference
Sam Griesemer
Defu Cao
Zijun Cui
Carolina Osorio
Y. Liu
62
2
0
07 Dec 2024
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
34
1
0
05 Nov 2024
Simulation-based inference with scattering representations: scattering is all you need
Kiyam Lin
Benjamin Joachimi
Jason D. McEwen
21
1
0
11 Oct 2024
Cost-aware Simulation-based Inference
Ayush Bharti
Daolang Huang
Samuel Kaski
F. Briol
28
1
0
10 Oct 2024
A Comprehensive Guide to Simulation-based Inference in Computational Biology
Xiaoyu Wang
Ryan P. Kelly
A. Jenner
D. Warne
Christopher C. Drovandi
28
3
0
29 Sep 2024
Embed and Emulate: Contrastive representations for simulation-based inference
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
24
0
0
27 Sep 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
35
0
0
22 Jul 2024
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks: An Extended Investigation
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
35
6
0
05 Jun 2024
On the Sequence Evaluation based on Stochastic Processes
Tianhao Zhang
Zhexiao Lin
Zhecheng Sheng
Chen Jiang
Dongyeop Kang
27
0
0
28 May 2024
Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs
Sanmitra Ghosh
Paul J. Birrell
Daniela De Angelis
43
1
0
02 May 2024
All-in-one simulation-based inference
Manuel Gloeckler
Michael Deistler
Christian Weilbach
Frank D. Wood
Jakob H. Macke
29
26
0
15 Apr 2024
Simulation-Based Inference with Quantile Regression
He Jia
15
2
0
04 Jan 2024
Consistency Models for Scalable and Fast Simulation-Based Inference
Marvin Schmitt
Valentin Pratz
Ullrich Kothe
Paul-Christian Burkner
Stefan T. Radev
16
9
0
09 Dec 2023
Pseudo-Likelihood Inference
Theo Gruner
Boris Belousov
Fabio Muratore
Daniel Palenicek
Jan Peters
21
0
0
28 Nov 2023
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability
Maciej Falkiewicz
Naoya Takeishi
Imahn Shekhzadeh
Antoine Wehenkel
Arnaud Delaunoy
Gilles Louppe
Alexandros Kalousis
19
6
0
20 Oct 2023
Simulation-based inference using surjective sequential neural likelihood estimation
Simon Dirmeier
Carlo Albert
F. Pérez-Cruz
13
6
0
02 Aug 2023
Binary classification based Monte Carlo simulation
Elouan Argouarc'h
F. Desbouvries
10
0
0
29 Jul 2023
Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference
Vincent D. Zaballa
E. Hui
12
2
0
27 Jun 2023
Adaptive Conditional Quantile Neural Processes
Peiman Mohseni
N. Duffield
Bani Mallick
Arman Hasanzadeh
22
3
0
30 May 2023
Flow Matching for Scalable Simulation-Based Inference
Maximilian Dax
J. Wildberger
Simon Buchholz
Stephen R. Green
Jakob H. Macke
Bernhard Schölkopf
13
48
0
26 May 2023
Learning Robust Statistics for Simulation-based Inference under Model Misspecification
Daolang Huang
Ayush Bharti
Amauri Souza
Luigi Acerbi
Samuel Kaski
38
30
0
25 May 2023
Reliable Gradient-free and Likelihood-free Prompt Tuning
Maohao Shen
S. Ghosh
P. Sattigeri
Subhro Das
Yuheng Bu
G. Wornell
VLM
44
10
0
30 Apr 2023
Balancing Simulation-based Inference for Conservative Posteriors
Arnaud Delaunoy
Benjamin Kurt Miller
Patrick Forré
Christoph Weniger
Gilles Louppe
33
9
0
21 Apr 2023
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
Stefan T. Radev
Marvin Schmitt
Valentin Pratz
Umberto Picchini
Ullrich Kothe
Paul-Christian Burkner
BDL
17
29
0
17 Feb 2023
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Pablo Lemos
A. Coogan
Y. Hezaveh
Laurence Perreault Levasseur
27
30
0
06 Feb 2023
Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning
Aurelio Amerio
A. Cuoco
N. Fornengo
19
4
0
03 Feb 2023
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
20
10
0
31 Jan 2023
Optimizing the Noise in Self-Supervised Learning: from Importance Sampling to Noise-Contrastive Estimation
O. Chehab
Alexandre Gramfort
Aapo Hyvarinen
SSL
22
3
0
23 Jan 2023
Astronomia ex machina: a history, primer, and outlook on neural networks in astronomy
Michael J. Smith
James E. Geach
16
32
0
07 Nov 2022
From Denoising Diffusions to Denoising Markov Models
Joe Benton
Yuyang Shi
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
66
25
0
07 Nov 2022
Robust Neural Posterior Estimation and Statistical Model Criticism
Daniel Ward
Patrick W Cannon
Mark Beaumont
Matteo Fasiolo
Sebastian M. Schmon
14
36
0
12 Oct 2022
Contrastive Neural Ratio Estimation for Simulation-based Inference
Benjamin Kurt Miller
Christoph Weniger
Patrick Forré
6
15
0
11 Oct 2022
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
48
33
0
10 Oct 2022
Truncated proposals for scalable and hassle-free simulation-based inference
Michael Deistler
P. J. Gonçalves
Jakob H Macke
11
48
0
10 Oct 2022
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
6
34
0
05 Sep 2022
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
13
30
0
29 Aug 2022
Adversarial Bayesian Simulation
YueXing Wang
Veronika Rovcková
GAN
BDL
19
5
0
25 Aug 2022
Neural Posterior Estimation with Differentiable Simulators
Justine Zeghal
F. Lanusse
Alexandre Boucaud
B. Remy
E. Aubourg
13
14
0
12 Jul 2022
Discrete Contrastive Diffusion for Cross-Modal Music and Image Generation
Ye Zhu
Yuehua Wu
Kyle Olszewski
Jian Ren
Sergey Tulyakov
Yan Yan
DiffM
20
47
0
15 Jun 2022
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Ritabrata Dutta
TPM
BDL
UQCV
GAN
13
18
0
31 May 2022
Statistical applications of contrastive learning
Michael U. Gutmann
Steven Kleinegesse
Benjamin Rhodes
11
7
0
29 Apr 2022
GATSBI: Generative Adversarial Training for Simulation-Based Inference
Poornima Ramesh
Jan-Matthis Lueckmann
Jan Boelts
Álvaro Tejero-Cantero
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
GAN
26
33
0
12 Mar 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
16
46
0
08 Mar 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
16
9
0
23 Feb 2022
Black-box Bayesian inference for economic agent-based models
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
11
23
0
01 Feb 2022
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
22
34
0
16 Dec 2021
1
2
Next