ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03712
  4. Cited By
On Contrastive Learning for Likelihood-free Inference

On Contrastive Learning for Likelihood-free Inference

10 February 2020
Conor Durkan
Iain Murray
George Papamakarios
    BDL
ArXivPDFHTML

Papers citing "On Contrastive Learning for Likelihood-free Inference"

27 / 77 papers shown
Title
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal
  Neural Ratio Estimation
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
12
40
0
15 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
23
1
0
02 Nov 2021
Robot Learning from Randomized Simulations: A Review
Robot Learning from Randomized Simulations: A Review
Fabio Muratore
Fabio Ramos
Greg Turk
Wenhao Yu
Michael Gienger
Jan Peters
AI4CE
10
77
0
01 Nov 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior
  Approximations Can Be Unfaithful
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
64
38
0
13 Oct 2021
Identification of Vehicle Dynamics Parameters Using Simulation-based
  Inference
Identification of Vehicle Dynamics Parameters Using Simulation-based Inference
Ali Boyali
S. Thompson
D. Wong
6
6
0
27 Aug 2021
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and
  Machine Learning for Reliable Simulator-Based Inference
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
16
5
0
08 Jul 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
20
37
0
02 Jul 2021
On Contrastive Representations of Stochastic Processes
On Contrastive Representations of Stochastic Processes
Emile Mathieu
Adam Foster
Yee Whye Teh
BDL
AI4TS
12
15
0
18 Jun 2021
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
D. Wu
Ruijia Niu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
12
8
0
05 Jun 2021
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
  Inference from Sampled Trajectories
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories
G. Isacchini
Natanael Spisak
Armita Nourmohammad
T. Mora
A. Walczak
18
0
0
03 Jun 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
475
0
08 Mar 2021
Metropolis-Hastings via Classification
Metropolis-Hastings via Classification
Tetsuya Kaji
Veronika Rockova
15
8
0
06 Mar 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
15
33
0
12 Feb 2021
Robust and integrative Bayesian neural networks for likelihood-free
  parameter inference
Robust and integrative Bayesian neural networks for likelihood-free parameter inference
Fredrik Wrede
Robin Eriksson
Richard M. Jiang
Linda R. Petzold
Stefan Engblom
A. Hellander
Prashant Singh
15
6
0
12 Feb 2021
HNPE: Leveraging Global Parameters for Neural Posterior Estimation
HNPE: Leveraging Global Parameters for Neural Posterior Estimation
Pedro L. C. Rodrigues
Thomas Moreau
Gilles Louppe
Alexandre Gramfort
17
11
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
96
184
0
12 Jan 2021
Learning summary features of time series for likelihood free inference
Learning summary features of time series for likelihood free inference
Pedro L. C. Rodrigues
Alexandre Gramfort
AI4TS
18
4
0
04 Dec 2020
IV-Posterior: Inverse Value Estimation for Interpretable Policy
  Certificates
IV-Posterior: Inverse Value Estimation for Interpretable Policy Certificates
Tatiana Lopez-Guevara
Michael G. Burke
Nick K. Taylor
Kartic Subr
OffRL
6
0
0
30 Nov 2020
Simulation-efficient marginal posterior estimation with swyft: stop
  wasting your precious time
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
Benjamin Kurt Miller
A. Cole
Gilles Louppe
Christoph Weniger
6
19
0
27 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
8
27
0
11 Nov 2020
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
6
79
0
20 Oct 2020
Error-guided likelihood-free MCMC
Error-guided likelihood-free MCMC
Volodimir Begy
Erich Schikuta
6
3
0
13 Oct 2020
Simulation-based inference methods for particle physics
Simulation-based inference methods for particle physics
Johann Brehmer
Kyle Cranmer
AI4CE
6
21
0
13 Oct 2020
Telescoping Density-Ratio Estimation
Telescoping Density-Ratio Estimation
Benjamin Rhodes
Kai Xu
Michael U. Gutmann
6
94
0
22 Jun 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRL
AI4CE
13
157
0
31 Mar 2020
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
40
57
0
05 Jun 2019
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
33
145
0
30 Nov 2016
Previous
12