Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04025
Cited By
Can Graph Neural Networks Count Substructures?
10 February 2020
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can Graph Neural Networks Count Substructures?"
50 / 214 papers shown
Title
A Survey on Graph Representation Learning Methods
Shima Khoshraftar
A. An
GNN
AI4TS
27
107
0
04 Apr 2022
Synthetic Graph Generation to Benchmark Graph Learning
Anton Tsitsulin
Benedek Rozemberczki
John Palowitch
Bryan Perozzi
25
27
0
04 Apr 2022
A Survey on Machine Learning Solutions for Graph Pattern Extraction
Kai Siong Yow
Ningyi Liao
Siqiang Luo
Reynold Cheng
Chenhao Ma
Xiaolin Han
18
3
0
03 Apr 2022
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
9
26
0
02 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
28
39
0
25 Mar 2022
Graph Representation Learning with Individualization and Refinement
Mohammed Haroon Dupty
W. Lee
12
2
0
17 Mar 2022
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
25
106
0
01 Mar 2022
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
183
68
0
28 Feb 2022
Algorithm and System Co-design for Efficient Subgraph-based Graph Representation Learning
Haoteng Yin
Muhan Zhang
Yanbang Wang
Jianguo Wang
Pan Li
9
32
0
28 Feb 2022
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
20
138
0
25 Feb 2022
Message passing all the way up
Petar Velickovic
109
63
0
22 Feb 2022
1-WL Expressiveness Is (Almost) All You Need
Markus Zopf
9
11
0
21 Feb 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
95
45
0
30 Jan 2022
GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games
Shichang Zhang
Yozen Liu
Neil Shah
Yizhou Sun
FAtt
12
44
0
28 Jan 2022
Reinforcement Learning Based Query Vertex Ordering Model for Subgraph Matching
Hanchen Wang
Ying Zhang
Lu Qin
Wei Wang
W. Zhang
Xuemin Lin
17
18
0
25 Jan 2022
Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching
Xin Liu
Yangqiu Song
GNN
19
24
0
16 Dec 2021
Distance and Hop-wise Structures Encoding Enhanced Graph Attention Networks
Zhiyi Huang
Xiaowei Chen
Bojuan Wang
28
0
0
06 Dec 2021
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
19
73
0
28 Oct 2021
Nested Graph Neural Networks
Muhan Zhang
Pan Li
11
163
0
25 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
12
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
22
174
0
06 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
120
78
0
01 Oct 2021
Edge but not Least: Cross-View Graph Pooling
Xiaowei Zhou
Jie Yin
Ivor W. Tsang
24
2
0
24 Sep 2021
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
22
282
0
26 Jul 2021
Partition and Code: learning how to compress graphs
Giorgos Bouritsas
Andreas Loukas
Nikolaos Karalias
M. Bronstein
19
13
0
05 Jul 2021
Weisfeiler and Lehman Go Cellular: CW Networks
Cristian Bodnar
Fabrizio Frasca
N. Otter
Yu Guang Wang
Pietro Lió
Guido Montúfar
M. Bronstein
GNN
23
223
0
23 Jun 2021
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
13
64
0
12 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
19
130
0
11 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
11
121
0
08 Jun 2021
Learning by Transference: Training Graph Neural Networks on Growing Graphs
J. Cerviño
Luana Ruiz
Alejandro Ribeiro
GNN
14
18
0
07 Jun 2021
On the Universality of Graph Neural Networks on Large Random Graphs
Nicolas Keriven
A. Bietti
Samuel Vaiter
34
23
0
27 May 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
18
23
0
12 May 2021
Theoretically Improving Graph Neural Networks via Anonymous Walk Graph Kernels
Qingqing Long
Yilun Jin
Yi Wu
Guojie Song
36
37
0
07 Apr 2021
Improving the Expressive Power of Graph Neural Network with Tinhofer Algorithm
Alan J. X. Guo
Qing-Hu Hou
Ou Wu
11
0
0
05 Apr 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
31
104
0
08 Mar 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
25
244
0
04 Mar 2021
Autobahn: Automorphism-based Graph Neural Nets
Erik H. Thiede
Wenda Zhou
Risi Kondor
GNN
AI4CE
16
48
0
02 Mar 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
73
27
0
17 Feb 2021
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
22
87
0
15 Feb 2021
Utilising Graph Machine Learning within Drug Discovery and Development
Thomas Gaudelet
Ben Day
Arian R. Jamasb
Jyothish Soman
Cristian Regep
...
Jian Tang
D. Roblin
Tom L. Blundell
M. Bronstein
J. Taylor-King
AI4CE
11
36
0
09 Dec 2020
Counting Substructures with Higher-Order Graph Neural Networks: Possibility and Impossibility Results
B. Tahmasebi
Derek Lim
Stefanie Jegelka
GNN
32
30
0
06 Dec 2020
Graph convolutions that can finally model local structure
Rémy Brossard
Oriel Frigo
David Dehaene
GNN
18
47
0
30 Nov 2020
On Graph Neural Networks versus Graph-Augmented MLPs
Lei Chen
Zhengdao Chen
Joan Bruna
8
44
0
28 Oct 2020
A Simple Spectral Failure Mode for Graph Convolutional Networks
Carey E. Priebe
Cencheng Shen
Ningyuan Huang
Tianyi Chen
GNN
14
7
0
25 Oct 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
134
123
0
17 Oct 2020
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
15
12
0
31 Aug 2020
The expressive power of kth-order invariant graph networks
Floris Geerts
123
37
0
23 Jul 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
12
111
0
28 Jun 2020
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
15
118
0
26 Jun 2020
Walk Message Passing Neural Networks and Second-Order Graph Neural Networks
Floris Geerts
13
8
0
16 Jun 2020
Previous
1
2
3
4
5
Next